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INTRODUCTION 

The Kalman filter was a significant breakthrough in the 

area of linear filtering and prediction. It has been used in 

the processing of signals imbedded in noise for over twenty 

five years. A major application of Kalman filtering is the 

solution of navigational problems where information is 

received from multiple noisy sources. The Kalman filter has 

also been used for applications outside the area of 

navigation. C. R. Szelag [35] published an article in the 

Bell System Technical Journal using a Kalman filter to 

forecast telephone loading. The Kalman filter has even made 

its way into the economic literature. The Kalman filter has 

been used to forecast economic quantities such as sales and 

inventories [23]. 

This project examines the use of the Kalman filter to 

forecast intraday stock and commodity prices. The price 

forecasts are based on a market's price history with no 

external information included. For the Kalman filter to 

produce beneficial forecasts, the market must not be a random 

walk process, but must exhibit a statistically significant 

autocorrelation pattern which can be modeled. Once an 

appropriate Kalman filter model is determined, strategies for 

increasing profits can be studied. 

This dissertation presents the analysis techniques used 

to detect autocorrelation in a market and the models used to 
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describe the correlation. Several stock indexes and 

commodity markets are tested for autocorrelation. The Kalman 

filter algorithm and an adaptive Kalman filter algorithm are 

also presented and then are used to forecast prices for the 

Dow Jones Transportation index. Several buy and sell 

strategies are used to investigate the use of the Kalman 

filter forecasts to benefit market traders. 
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HISTORY OF MARKET ANALYSIS 

Market analysts are divided into two groups : 

fundamentalists and technical analysts. Fundamentalists base 

their analysis on the law of supply and demand and other 

economic principles. Technical analysts believe that future 

market behavior is not totally random, but related to past 

market behavior. This project is based on th.e theories used 

in technical analysis. 

Random Walk Argument 

Since the turn of the century, the question of whether 

market prices are random walk processes or not has been 

argued. In 1900, Bachelier [in Cootner [8] ] proposed that 

price differences are independent and that market prices 

follow a random walk model. If price changes are 

independent, then price forecasting is not beneficial since 

the best estimate is just the previous price. Working [39] 

and Kendall [21] stated that security prices are 

statistically independent of past history and that changes 

between successive items tend to be largely random. From 

these statistical results, the inference was made that 

mechanical trading rules will not work. 

Euguene Fama [13], considered the Father of the 

efficient market theory, justified the random walk model with 

the following logic: 
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1. Stock prices are the accumulation of randomly-
generated noise which is unrelated to real-world 
economic and political events. 

2. If a noise generating process is dependent, there 
are enough noise sources that the resulting actions 
are neutralized and price differences are 
independent. 

3. If a new strategy appears that allows a profit, the 
number of traders using the new strategy will grow 
until the strategy is no longer profitable. 

Fama tested his random walk hypothesis by calculating 

frequency distributions, normal probability charts, 

autocorrelation functions, and run tests. (Run tests study 

the number of consecutive price changes which have the same 

sign.) 

Technical analysts argue that since mechanical trading 

rules can produce a profit, markets must not be random walk. 

Alexander [1] tested one such mechanical trading rule, the 

filter technique. Alexander's results indicated that filters 

of all different sizes and all different time periods, yield 

profits significantly larger than a simple buy-and-hold 

policy. 

In an apparent attempt to satisfy the technical 

analysts, Fama tested Alexander's filter technique. 

Alexander's original tests were discovered to be flawed since 

they did not account for slippage (the price change from when 

the order was placed until the order was filled). Fama's 

tests resulted in the buy-and-hold policy showing a larger 

profit than the filter technique. 
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Studies were also done showing that not all markets are 

random walk processes. Cargill and Hausser [5] disproved the 

random walk hypothesis by using autocorrelation functions and 

spectral analysis. Their results invalidated the random walk 

as a general explanation of futures behavior, but for a 

number of commodities the random walk model is consistent 

with price behavior. A significant number of the futures 

contracts studied had either a first or second lag that was 

statistically significant. From this evidence, it was not 

possible to infer that these coefficients were selected from 

a population with zero autocorrelation. 

Data Sampling 

Previous market studies have been based on yearly, 

quarterly, monthly, weekly, and daily prices. The data 

considered are usually closing prices or an average of daily 

closing prices for the period. Studies have also been done 

on open, high, low, and close prices. 

The use of averages (e.g., weekly or monthly) or stock 

indexes may alter the results of a study. Osborne [26] 

stated that using averages instead of actual data corrupts 

the investigation. A positive correlation appears when you 

might have white noise. Kendall [21] found that indexes 

appear to behave more systematically than individual stocks. 

He suggested that this might be due to the reduction of 

random elements by averaging. 
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Intraday Analysis 

Recently, market analysis has examined intraday, 

overnight, and weekend effects. Wood, Mclnish, and Ord [38] 

formed a stock index by averaging approximately 1000 stocks 

over a six month period. They calculated the index value 

minute by minute to form a "typical" day. Autocorrelations 

of the data showed that only the first thirty minutes of the 

day had significant correlation and it lasted for only the 

first twelve lags. Other trading intervals during the day 

did not exhibit any significiant autocorrelation. It was 

also found that inclusion of the overnight price difference 

and infrequent trading induced correlation. 

Mechanical Trading Rules 

Mechanical trading rules and the growth of personal 

computers have started to change the way that the markets 

perform [15]. A few big brokerage houses are using automatic 

buying and selling programs which sell stocks and buy stock 

futures when the stock price exceeds the futures price, and 

buy stocks and sell the futures when the stock price falls 

below the futures price. Investors then profit in either 

case. Some Wall Street analysts say the programs are partly 

responsible for big swings in the Dow Jones Industrial. 

Quoting Michael Metz, analyst with Oppenheimer & Co., "These 

programs trade hour by hour, day by day. This is going on 

all the time. They tend to exaggerate moves once they are 
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under way" [15]. Robert Colby, analyst from Smith Barney, 

Harris Upham & Co., said, "For 15 minutes up to half a day I 

think the programs can be a dominant force, but there is no 

effect on long term trends" [15]. 
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MARKET ANALYSIS 

Introduction 

The first market analysis objective is to determine if 

there is any correlation present in a market. If a 

correlation pattern does exist, the second objective is to 

develop a model which generates data with the same 

statistical parameters. The models used to realize the 

market process are: Gauss-Markov, damped cosine, and ARIMA. 

After a model is selected, the model is used to forecast 

future market prices. 

Market analysis is divided into 2 areas: stock indexes 

and individual commodity markets. Stock indexes were chosen 

as the initial area of investigation because hourly data were 

more readily available and because previous research 

suggested that stock indexes tended to be more correlated. 

The use of stock indexes allows preliminary models to be 

identified before analyzing individual markets where the 

correlation structure may be smaller, if not non-existent. 

This chapter examines the analysis techniques used and 

suggested models for realizing the market processes. Several 

stock indexes and commodity markets were tested and those 

exhibiting a correlation pattern were fit to the suggested 

models. 
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Analysis Techniques 

Two techniques used to determine if a correlation 

pattern exists in a time-series are the autocorrelation 

function (ACF) and partial autocorrelation function (PACF). 

The ACF calculates the correlation between samples which are 

k periods apart. The ACF is calculated from a sequence of 

summations as shown in (2-1). 

N-k-1 
2 x(i)*x(i+k) 

r(k) = N , i=0 (2-1) 
N-k N-1 

2 x(i)*x(i) 
i=0 

where N is the number of samples in the time series. The ACF 

will also show if there are any periodicities in the time 

series. 

The PACF function is based on the ACF and determines the 

correlation between samples k periods apart after removing 

any correlation effects from intermediate samples [27]. The 

PACF formula is shown in (2-2). 

k-1 
r(k) - 2 #(k-l,j)*r(k-j) 

9>(k,k) = 1=0 (2-2) 
k-1 

1 - 2  #(k - l , j ) * r ( j )  
j=0 

where 0(k,j) = #(k-l,j) - #(k,k)*#(k-l,k-j). 

The ACF and PACF formulas presented are estimates of the 
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actual correlation coefficients since they are calculated 

with sampled data. They are both normalized such that the 

coefficient at k=0 is equal to 1. Since this value is 

constant, lag 0 is not shown in any of the following figures. 

To determine if any correlation is significant, the 

coefficient at each lag is checked to see if it is 

statistically different from the null hypothesis, or r(k)=0. 

A correlation coefficient is considered statistically 

significant if it lies outside the 95% confidence interval 

around r(k)=0 [27]. The 95% confidence level is met if the 

magnitude of the T-ratio is greater than 1.96. The T-ratio 

is calculated from 

where s^ is the standard deviation of the coefficient. The 

standard deviation, s^, for the ACF is calculated from 

where the upper summation limit is determined from the moving 

average length of the model. For example, the upper limit is 

3 if the model being used has a MA(3) component. The 

standard deviation of a PACE coefficient is calculated from 

T = r(k) 
Sk 

or = dfk.k) 
sk 

(2-3) 

k-1 
s(k) = (1 + 2 Z r(j)2 )l/2 * N'I/Z 

j = l 
(2-4) 
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Sk = N-1/2. (2-5) 

The market data studied required a large number of samples to 

reduce the uncertainty of the correlation coefficient due to 

sample size. The large value of N reduced s^ such that the 

statistically significant ACF and PACF coefficients were not 

obscured in noise. 

The ACF (2-1) and the PACF (2-2) formulas assume that 

the time series is a stationary process. Market prices have 

a non-stationary mean, therefore, a stationary working series 

is created by taking thé first difference of the prices. If 

the time series also had a non-stationary variance, then the 

natural logarithm of the prices would have been calculated 

before doing the differencing. The ACF and PACF are then 

calculated using the stationary working series. 

Models 

The next step in market analysis is to choose models 

which exhibit the same statistical qualities as the market 

price data. Models were determined by two methods in this 

study. Both methods involved matching Imown models to the 

correlation structure of the sample data. Since the market 

price realizations are non-stationary, the first difference 

of the market prices are used for analysis. The first method 

matches the first difference ACF with common engineering 

models which provide similar ACFs. The second method uses 



www.manaraa.com

12 

Box and Jenkin's Autoregressive Integrated Moving Average 

(ARIMA) analysis techniques and the associated family of time 

series models. 

When correlation is present in the first difference, the 

first difference ACF consists of white and colored noise 

components. The white noise is represented by a spike at lag 

zero and the colored noise is represented by a significant 

pattern in the non-zero lags. An engineering model produces 

a realization of the colored noise by driving white Gaussian 

noise into a shaping filter [4]. The shaping filter output 

has the same statistical qualities as the colored noise. The 

transfer function of the shaping filter is determined from 

the engineering model's Power Spectral Density (PSD) function 

which is the Fourier transform of the model ' s ACF as shown in 

( 2 - 6 ) .  

S(s) = F{ R(t) } (2-6) 

^ The models chosen are rational in s^ so that spectral 
I 
factorization can be performed on S(s) to obtain the shaping 

filter transfer function [4]. Spectral factorization 

separates the PSD into two parts. One part, S+(s), has all 

the poles and zeroes in the left half plane, and the second 

part, S~(s), contains the poles and zeroes that lie in the 

right half plane. 

S(s) = S+(s)*S-(s) (2-7) 
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S+(s) is used as the transfer function of the shaping 

filter in Figure 2-1. The output of the shaping filter, x, 

has the PSD shown in (2-8). 

Sx(s) = S+(s)*S+(-s)*S„(s) (2-8) 

If the input, w, is white Gaussian noise which has a PSD of 

Svf(s) = 1, then the PSD of the output is the same as the 

PSD of the random process being modelled. 

V 

MODEL 
SHAPING 
FILTER 
S-^(s) 

? 

MODEL 
SHAPING 
FILTER 
S-^(s) 

S„(s)=l Sx(s) = S+(s)*S+(-s)*l 
= S+(s)*S-(s) 

Figure 2-1. Shaping Filter Realization 

Using standard linear systems analysis techniques [6], 

the shaping filter transfer function can be converted to 

continuous-time, state-space equations of the form shown in 

(2-9a) and (2-9b). 

X = Fx + Gw (2-9a) 

y = Bx (2-9b) 

where x is the state vector, w is the white noise driving 

function, and y is the output. The continuous-time model 
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(2-9) is then converted to a discrete-time, state-space model 

(2-lOa) and (2-lOb) for use by a Kalman filter. 

Xk+1 = @*xk + wjj (2-10a) 

7jj = B*Xk (2-lOb) 

When F is time-invariant, the state-transition matrix, $, is 

calculated from 

$ = L-l[(sI - F)-l] (2-11) 

where L~^ is the inverse Laplace transform and I is an nxn 

identity matrix. The white driving sequence, w^, is 

calculated using the integral shown in (2^12). 

Wk = 
^k+l 

$(tk+i-u)*G*w(u) du (2-12) 
tk 

The connection matrix, B, is not changed in the conversion to 

the discrete format. 

An additive white noise source is added to the output of 

the engineering model to realize the complete first 

difference data process. An extra state is also included to 

perform the discrete integration needed to convert tho first 

difference data back to the original market price data. The 

complete block diagram for the market price realization is 

shown in Figure 2-2. 

The engineering models considered are the Gauss-Markov 
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MARKET 
PRICE 

SHAPING 
FILTER 

DISCRETE 
INTEGRATOR 

FIRST 
DIFFERENCE 

Figure 2-2. Block diagraun of Engineering Model Approach to 
Market Price realization 

and damped cosine models. The random walk process is 

included to show the appropriate model if no correlation is 

present in the first difference ACF. 

Random walk 

A random walk process can be described as integrated 

white Gaussian noise. It is a non-stationary process with a 

mean of 0 and variance which increases with time. The 

expected value for the next sample of the process is the same 

as the present sample. 

A state space model for a random walk process can be 

derived from the differential equation shown in (2-13). 

X = w(t) (2-13) 

Converting (2-13) to discrete-time form produces the 

following state-space model for the random walk process. 

Xk+1 = xk + wk 

yk = Xk 

(2-14a) 

(2-14b) 



www.manaraa.com

16 

Gaus s-Markov 

The Gauss-Markov process has an exponential ACF as shown 

in (2-15) with zero mean and a variance of a^. 

R(nT) = aSe-plnTi (2-15) 

where T is the sampling period. The parameters 3 and 

are estimated from the ACF being modeled. The farther that 

two samples are separated, the smaller the correlation 

between them. 

The PSD of the Gauss-Markov model is defined by 

S(s) = —§2^ (2-16) 

and the shaping filter transfer function is 

S+(s) = (2-17) 
s + (3 

Converting the transfer function to a differential equation 

produces the following continuous-time state equation. 

X = -Px + /2a2p*w(t) (2-18a) 

7 = l*x (2-18b) 

Converting (2-18) to a discrete-time state equation then 

gives 

xk+i = + Wk • (2-19a) 

yjc = l*xk (2-19b) 
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where w^ is defined as 

ftk+i I e"P(tk+l"u)*y2a2p * w(u) du (2-20) 
tk 

A graphic example of the additive combination of white 

noise and the Gauss-Markov model is shown in Figure 2-3. 

This is similar to a first difference ACF for a market price 

process which includes an exponential autocorrelation 

component. 

0.78 

8.38 

8.38 

15.00 5.00 
TAU 

Figure 2-3. Example ACF for a Gauss-Markov model plus 
additive white noise 

Damped cosine 

The damped cosine model's ACF is the product of an 

exponential and a cosine as shown in (2-21). 
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R(nT) = a2*e-a|nTl*cos(PnT) (2-21) 

The damped cosine allows negative correlation to occur in the 

process. The parameters a^, a, and P are again to be 

estimated from the sample ACF. 

The damped cosine model's PSD and shaping filter 

transfer function are shown in (2-22) and (2-23), 

respectively. 

S+(s) = J2a^a(s + ia^ + (2-23) 
s 2 + 2as + + (32 

Converting the shaping filter transfer function (2-23) 

to continuous state-space format results in (2-24). 

XI = X2 

X2 = -(«2 + p2)xi -2ax2 + w 

Jza^a ] 
X2 

(2-24a) 

(2-24b) 

(2-24C) 

The discrete state equations for the damped cosine model 

are presented in (2-25a) and (2-25b). 

xi(k+l) = (Di+aD2)xi(k) + D2X2 + Wi(k) (2-25a) 

X2(k+1) = -(a2+p2)D2Xi(k) + (Di-aD2)X2(k) + W2(k) (2-25b) 

where 
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Di = e-loTl * cos(pT) (2-26) 

D2 = [e-M * sin ((3T)3/|3 (2-27) 

and 

S r ^ k + l  = ®(tjj+1-u)*G*w(u) du (2-28) 
Jtk 

where fi is the state transition matrix. 

An example of the additive combination of the Damped 

Cosine model and white noise is shown in Figure 2-4. 

0 . 8 0 '  

0.69 

0.00 

-0.20-1 
-15.00 3.00 10.00 19.90 

TAU 

Figure 2-4. Example ACF of the damped cosine model plus 
additive white noise 

ARIMA models 

Box and Jenkin's ARIMA models are actually a family of 

discrete models used to realize time series data [27]. The 
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ARIMA models are determined through a three stage iterative 

procedure. The identification, or first, stage uses the ACF 

and PACF of the sample data to suggest possible models. The 

estimation, or second, stage optimizes the model parameters 

such that the mean square forecast error is minimized for the 

given data sample. The diagnostic stage examines the 

forecast errors to determine if the model is acceptable. If 

it is not, the procedure returns to the identification stage. 

ARIMA models consist of 3 main parts: the 

autoregressive (AR) part which specifies how the next value 

is correlated with previous values, the integrated (I) part 

which specifies the number of differences required to 

transform the original time series to a stationary working 

series, and the moving average (MA) part which specifies how 

the next value is correlated to previous noise values. The 

AR terms represent the characteristic equation of the 

process. They specify the sinusoidal and/or exponential 

patterns in the time series. The integrated and MA terms 

account for the non-stationarity and white noise inputs to 

the process. The ARIMA (p,d,q) family of models are of the 

form 

- - #pBP)(l-B)d Zjj = (l-G^B - ••• -0qB1)wjj (2-29) 

where 

p is the number of AR terms, 
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d is the number of differences, 

q is the number of MA terms, 

are the AR coefficients, 

0i are the MA coefficients, 

B is a unit time delay operator, 

is the measurement at time t^, and 

is the residual error at time t^. 

The ARIMA models are converted to state space through an 

iterative process. First, the model equation in (2-29) is 

multiplied through and arranged as shown in (2-30), 

Zk = #lZk-l + #2Zk-2 + ••• - 0iwk-i - (2-30) 

The state definition begins by replacing Z with xj in 

(2-30) and then substituting (2-31) into (2-30). 

xj(k-j+l) = #jxi(k-j) + 8j_iw(k-j+l) (2-31) 

where j is the number of states and is equal to the larger of 

p+d or q+1. Each succeeding state equation is of the form 

Xi(k+1) = #i*xi(k) + Xi+i(k) + 0i-i*w(k+l) (2-32) 

where i varies from j-1 down to 1. As each state equation is 

defined, (2-32) is substituted into (2-30). For example, 

this process leads to the following matrix format for an 

ARIMA (3,0,2) model. 
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xi(k+l) 01 1 0 %l(k) 1 

X2(k+1) 02 0 1 X2(k) + -01 

X3(k+1) 03 0 0 X3(k) -02 

The ARIMA models can be used to simulate the discrete 

forms of the engineering models previously discussed. The 

difference occurs in the way that the parameters are allowed 

to vary. The optimization of the ARIMA models assumes each 

parameter varies independently. When the engineering models 

are simulated, the parameters are dependent on each other to 

guarantee that the proper relationships in the engineering 

models are not disturbed. The Gausa-Markov plus white noise 

model of the first difference is a special case of an ARIMA 

(1,1,1) and the damped cosine plus white noise model is a 

special case of an ARIMA (2,1,2). 

Stock Indexes 

Stock indexes are weighted averages of selected stock 

prices. A stock index may concentrate on stocks in a 

particular industry, e.g., the Dow Jones 20 Transportations 

Index, or an index may be a collection of stocks across the 

entire market such as the Standard and Poor's Composite 500 

Index. 

The Dow Jones 20 Transportations, Dow Jones 30 

Industrials, and Standard and Poor's 40 Financials indexes 

chosen for this project are based on the New York Stock 
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Exchange. These indexes are reported hourly throughout the 

day and at the market closing. An opening price is also 

reported for the Dow Jones indexes. Hourly data for the Dow 

Jones Indexes and Standard and Poor's Financial Index were 

obtained from The Wall Street Journal [12] and Standard and 

Poor's Corporation Records - Daily News Section [33], 

respectively. Daily, weekly, and monthly prices for all 

stock indexes were found in the Daily Stock Price Record 

[34]. 

Dow Jones 20 Transportations Index 

The Dow Jones 20 Transportations Index (DJT) was the 

initial index studied and ended up being the baseline data 

for the analysis. The first sample realization (DJT #1) 

consisted of 1036 hourly readings from February 22, 1985, to 

September 23, 1985. Figure 2-5 depicts the DJT #1 hourly 

data. The first difference ACF and PACF suggest that a small 

colored noised component is present. The ACF and PACF for 

DJT #l's first difference are shown in Figure 2-6. The first 

difference correlation pattern indicates that ARIMA (2,0,0) 

and ARIMA (1,0,1) models should be estimated along with the 

Gauss-Markov and damped cosine models. Estimating the model 

parameters provide the following models for the DJT #1 first 

difference: 

Gauss-Markov: 

R(nT) = 0 . 3 9 2 2  è-0-3227 InTl (2-34) 
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Figure 2-5. DJT #1 realization 
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Figure 2-6. ACF and PACF of DJT #1 
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ARIMÀ (2,0,0): 

Zk = 0.1612 Zk_i +0.0773 Zk_2 + (2-35) 

ARIMA (1,0,1): 

Zjj = 0.7222 Zk_i -0.5792 +Wk (2-36) 

The damped cosine model reverted to the Gauss-Markov model 

for DJT #1. 

To confirm that the statistically significant 

autocorrelation found for DJT #1 was not caused by 

non-typical sample data, second and third realizations of 

DJT data were collected. The second realization (DJT #2) 

consisted of 896 hourly readings from January to June, 1984. 

The 128 days of samples provided an ACF which had positive 

correlation for the first 5 lags. The ACF and PACE for DJT 

#2 are shown in Figure 2-7. 

The suggested models for the DJT #2 first difference 

are: 

Gauss-Markov: 

R(nT) = 0.3311 e-0-3689|nT| (2-37) 

Damped Cosine: 

R(nT) = 0.1875 e'O 0567!nT| cos(0.0555nT) (2-38) 

ARIMA (3,0,0) 

Zk = 0.0925 Zk_i +0.0425 Zk-2 +0.1108 Z^-g + Wfc (2-39) 

ARIMA (1,0,1): 

Zk = 0.7448 Zk-i -0.6459 Wk-l +Wk (2-40) 
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Figure 2-7. ACF and PACF of DJT #2 

The DJT #2 first difference required an ARIMA (3,0,0) model 

instead of an ARIMA (2,0,0). The ARIMA (2,0,0) model could 

not reduce the correlation in the forecasts errors below an 

acceptable level. 

The third realization (DJT #3) was gathered from July 

through December, 1983. It consists of 896 samples from the 

128 day period. The DJT #3 ACF had a positive correlation 

for the first seven lags. Figure 2-8 shows the ACF and PACF 

for DJT #3. 

The models suggested for the DJT #3 realization are: 
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Figure 2-8. ACF and PACF of DJT #3 

Gau s s-Markov: 

R(nT) = 0.3298 e-0-3090|nT| 

Damped Cosine: 

R(nT) = 0.2767 e-0.150l|nT| cqs 0.0307nT 

ARIMA (2,0,0) 

Zjj = 0.1031 Zk-i +0.0900 Zk-2 ^ 

ARIMA (1,0,1): 

Zjj = 0.7710 Zk-i -0.6664 + wjj 

(2-41) 

(2-42) 

(2-43) 

(2-44) 

All three DJT hourly realizations did exhibit a positive 

correlation for the first few lags. One goal of this 
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analysis is to determine if a single model is acceptable for 

all realizations of a given market. These DJT realizations 

all had the Gauss-Markov and ARIMA (1,0,1) models in common. 

These models will be tested later in a Kalman filter to 

determine which one produces the optimum forecasts. 

To determine if the positive correlation could be found 

for larger sampling periods, the Dow Jones Transportation 

index was also sampled daily, weekly, and monthly. The daily 

closing data did not provide any statistically significant 

correlation. Monthly and weekly data from January, 1977, 

through September, 1985, did not exhibit any significant 

correlation, either. 

The Dow Jones Transportations Index had significant 

autocorrelation when sampled hourly, but appears to be a 

random walk process when sampled weekly and monthly. The Dow 

Jones 30 Industrials and the Standard and Poor's 40 

Financials indexes were also tested to see if the hourly 

correlation is present in other indexes. 

Dow Jones 30 Industrials Index 

The Dow Jones 30 Industrials Index (DJI) was sampled 

hourly from January 2 through March 28, 1985. The data did 

not provide any significant correlation. Daily closing 

prices from January 2 through June 28, 1985, and monthly 

readings from January 1981 through September 1985 did not 

produce any statistically significant correlation, either. 
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Standard and Poor* s 40 Financials Index 

Examining hourly prices from May through September, 

1985, provided a significant correlation pattern. The 

correlation is apparent for six lags which is the number of 

measurements available each day. The ACF and PACF are shown 

in Figure 2-9. 
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Figure 2-9. ACF and PACF of the S&P Financial Index 

The following engineering models were suggested by 

estimating the model parameters from the first difference ACF 

and PACF: 
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Gaus s-Markov: 

R(nT) = 0.0119 e-0.3172 jnTj (2-45) 

Damped cosine model: 

R(nT) = 0.0099 e-0-1767lnTl cos(0.0273nT) (2-46) 

The first difference ACF and PACF also suggested ARIMA 

(2,0,0) and (1,0,1) models, but their parameters were not 

estimated. 

The S&P Financial index was also sampled daily from 

January through June, 1985, but no correlation pattern was 

present. 

Commodity Markets 

Several commodity markets were examined to see if any 

correlation structure existed in a single market. Since a 

customer can buy and sell in a commodity market, the results 

could be used more' directly than those from stock indexes. 

The commodity markets examined were corn, soybeans. United 

States Treasury bonds, gold, and Standard and Poor's 

Composite 500 Index futures. 

Transaction data for each commodity was obtained 

directly from the respective commodity exchange. These data 

were then sampled each half hour, each fifteen minutes, and 

each minute. The transaction data were also used without 

regard to the time between transactions. 
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Corn 

The July 1986 corn contract on the Chicago Board of 

Trade (CBOT) was sampled every half hour from January 2 to 

January 15, 1986. The coefficient for lag 3 was the only 

statistically significant lag. This value was probably a 

result of sample variation. 

Corn prices were then sampled every minute from January 

6 to January 10, 1986. The 1604 samples produced a negative 

exponential pattern in the first difference. This pattern 

could be modeled with a Gauss-Markov model or an ARIMA 

(1,0,1) model. The correlation only exists for approximately 

6 minutes. The first difference ACF and PACF are shown in 

Figure 2-10. Corn was not traded very actively during the 

period sampled, therefore the first difference of the samples 

is quite often zero. The effect this had on the ACF and PACF 

was not studied. 

Analysis of the corn prices at each transaction was 

based on 659 transactions from January 2 through January 15, 

1986. The first two ACF lags were significantly correlated 

with the first lag having a T-ratio of -11.03. The first 

difference of the transaction data appears to fit an ARIMA 

(1,0,0) process. The ACF and PACF are shown in Figure 2-11. 

United States Treasury Bonds 

The U.S. Treasury Bond market at the CBOT was saimpled 

every half hour from January 2 through January 22, 1986. 
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Figure 2-10. ACF and PACF of Corn Sampled by Minute 

There was no significant correlation present in this data 

realization. 

The transaction data for January 2 and 3, 1986, produced 

significant correlation in the first and third lags of the 

ACF, but no significant pattern could be identified. 

Soybeans 

The July 1986 contract for soybeans on the CBOT was 

sampled each half-hour, each minute, and by transaction in 

January 1986. There was no significant correlation in the 

the ACF or PACF for any sample period. 
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Figure 2-11. ACF and PACF of Corn Transactions 

Gold 

Gold prices were obtained from the Commodity Exchange in 

New York City for the June 1986 contract. Sampling every 

half-hour from January 6 through January 17, 1986, supplied 

120 data points, but the analysis did not show any 

correlation in the ACF and suggests that gold is a random 

walk process when sampled every half hour. 

Examining the transaction data for January 6 and 7, 

1986, the first ACF lag was significant, but no correlation 

pattern could be discerned. 



www.manaraa.com

34 

Standard and Poor's 500 Composite Index Futures 

The S&P 500 Futures contract is based on the S&P 500 

index for stocks. It is a new type of futures contract which 

does not have an underlying commodity to deliver. 

Transaction data for the March 1986 and June 1986 contract 

months were obtained from the Chicago Mercantile Exchange. 

Half hour sampling of the March 1986 contract from 

January 2 to February 28, 1986, only provided significant 

correlation at lags 6 and 13. 

A realization was also created by sampling the March 

1986 data every 15 minutes from January 2 through February 5, 

1986. The first lag of the ACF showed a negative 

correlation, but it was the only lag to be significant. 

Portfolio Analysis 

With favorable results provided by the stock indexes and 

insignificant correlation provided by the individual 

commodity markets, a small portfolio was constructed and 

analyzed to see if the averaging of individual markets would 

provide a more interesting correlation structure. The 

portfolio consisted of two different contracts from the same 

commodity market: the March 1986 and June 1986 S&P 500 

Futures contracts. The portfolio's hourly value was 

calculated as the average of the two contracts. The 

portfolio was analyzed from January 2 through February 5, 

1986. 
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The portfolio's first difference ACF exhibited positive 

correlation for the first two lags. This was an interesting 

result since there was no correlation present in either of 

the two contracts when analyzed individually. Further 

analysis of the portfolio revealed that the ACF coefficients 

were very similar to the cross correlation coefficients 

between the two contracts. A portfolio's autocorrelation 

would probably not be significant if the individual 

components did not have significant autocorrelation and were 

not significantly cross-correlated. 

Market Open/Close Effect 

Initial analysis on market prices considered the period 

from market closing until the next market opening to be one 

sample period. There was some concern about what effect this 

open/close period had on the analysis. To study the 

open/close effect, the price change between close and open 

was removed from the first difference data. The positive 

correlation that was exhibited in the DJT data still existed, 

but its magnitude was decreased. The ACF of the DJT #1 

series with the open/close price difference removed is 

displayed in Figure 2-12. The first lag was reduced by 

approximately 20% for the three DJT realizations. The 

positive correlation only lasts 6 legs now without the 

open/close interval instead of the 7 lags that were positive 
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Figure 2-12. ACF of DJT #1 with Open/ Close Price 
Difference Removed 

before. This is probably related to the fact that there are 

now only 6 price differences each day instead of seven. 

Random Number Generator 

There was also a concern that the positive correlation 

patterns found in the DJT realizations could have been 

produced by some unknown idiosyncrasy in the computer program 

used to analyze the data. Thus, a random number generator 

was used to produce 1035 samples from a normal distribution 

with zero mean and a variance identical to DJT #1. These 

data were then analyzed, and there were no significantly 
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correlated lags in either the ACF or PACF. 

Next, a randomly generated price index was created by-

averaging four individual random sequences similar to the one 

used above. Lag 4 of the ACF was the only lag outside the 

95% confidence interval for statistical significance. There 

was no exponential or cosine pattern present in the ACF. 

This check then supports the theory that non-trivial 

correlation structure does, in fact, exist in certain market 

first differences. 

Summary 

The market analysis section has described the analysis 

procedures and algorithms, suggested models for realizing the 

process, tested data samples from various stock indexes and 

commodities, and examined results from variations in the 

analysis. The analysis procedures included the 

autocorrelation function (ACF) and partial autocorrelation 

function (PACF) which are used to calculate correlation in 

the data. Statistical significance of the correlation can be 

measured with the T-ratio test. 

Suggested models include the continuous Gauss-Markov and 

damped cosine models and the discrete ARIMA models. The 

conversion of the Gauss-Markov and damped cosine models to 

differential equations and then to discrete state-space 

format is explained. The conversion of. the ARIMA models to 

state space form was also explained. 
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Various stock indexes were examined for correlation. 

The Dow Jories 20 Transportations Index and Standard and 

Poor's 40 Financials Index exhibited a statistically 

significant correlation pattern when sampled hourly. The 

indexes were also sampled with larger time periods, but no 

significant autocorrelation was detected. The Dow Jones 30 

Industrials Index was tested, but no significant correlation 

was found even when the sampling was done hourly. 

Corn, soybeans, U.S. Treasury bonds, gold, and Standard 

and Poor's Composite 500 Index Futures were the individual 

commodity markets tested. Corn has a correlation pattern 

present when sampled each minute and by transaction. 

Treasury bonds, S&P 500 Index Futures, and gold produced 

significant lags, but no correlation pattern amenable to 

modelling was exhibited. The soybean market did not show a 

correlation pattern for any of the sample periods tested. 

Additional results were also presented for the 

portfolio, open/close, and random number generator analyses. 

The portfolio analysis investigated the effect of using 

indexes instead of individual markets. It suggests that any 

cross correlation present between the portfolio components is 

a major contributor to the correlation shown by the 

portfolio. The open/close analysis studied the effects of 

including the open/close difference in the first difference 

calculations. The open/close difference does enhance the 
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correlation present in the market price data. The 

correlation pattern for the Dow Jones Transportation Index 

was still significant even with the open/close Interval 

removed. The random number generator study examined the 

possibility that the correlation structure shown by the Dow 

Jones Transportation and Standard and Poor's Financial 

Indexes were induced by the analysis procedures. A similar 

correlation structure was not present when the random data 

was analyzed. Therefore, the correlation shown is actually 

present in the respective index realizations. 
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KALMAN FILTER 

Introduction 

In 1960, R. E. Kalman introduced a recursive algorithm 

to solve the linear filtering and prediction problem using a 

state-space approach [4]. The Kalman filter is a linear, 

discrete-time system which provides a recursive solution to a 

set of difference equations. The recursive nature of the 

Kalman filter requires only the previous values of the state 

vector to be retained to produce future estimates. This 

recursive algorithm makes the Kalman filter useful for 

real-time applications. The state space format makes it easy 

to implement the Kalman filter on a digital computer. 

The Kalman filter provides the optimum estimate in a 

least squares sense of a random process which is being 

sampled with noisy measurements. The Kalman filter can be 

used to "filter" the best estimate or it can be used to 

forecast future values of the random process. 

The Kalman filter models a process as the output of 

white noise passing through a linear system. The states are 

selected such that the filter output is formed from the 

linear combination of the states. 

A Kalman filter can also be used to model non-stationary 

processes if a linear differential equation relating the 

process to white noise can be determined. If the model 

parameters are time-varying, an adaptive Kalman filter can 
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often be used to estimate the non-stationary process. 

This chapter on the Kalman filter will present: 1) the 

formulation of the Kalman filter algorithm, 2) the conversion 

of models discussed in the previous chapter into Kalman 

filter format, 3) an adaptive Kalman filter algorithm for 

estimating non-stationary processes, 4) conversion of the 

ARIMA (1,1,1) model into the adaptive Kalman filter, and 5) 

the results from using the Kalman filter to forecast market 

prices for the Dow Jones Transportation Index. 

The Kalman filter and adaptive Kalman filter algorithms 

are presented to provide the reader with a basic 

understanding of these Kalman filters. Readers interested in 

a more in depth discussion of the Kalman filter should refer 

to the text by Brown [4]. The text by Haykin [18] provides a 

reference for adaptive filtering in general, while the 

article by Sastri [30] provided the specific adaptive Kalman 

filter algorithm used in this project. 

Kalman Filter Algorithm 

The Kalman filter is based on a discrete state space 

approach where the random process is modeled by a state 

equation (3-la) and a measurement equation (3-lb). 

Xk+1 = «kXk + Hk (3-la) 

zk = HkSk + vk (3-lb) 

For a process having a single noisy output and modeled using 
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n internal states and m white noise inputs, x is the 

n-dimensional state vector, w is the m-dimensional white 

noise input vector, z is the noisy output measurement, and v 

is the additive measurement noise. For the single output 

system, z and v are both scalars. The other parameters in 

the state description are the state transition matrix, and 

the connection vector, H. The (nxn) state transition matrix 

describes the change in the states from tjj to tj^+i when 

there are no driving functions, i.e., w = 0. The 

n-dimensional connection vector describes the linear 

combination of states which comprise the output. 

The process and measurement noise parameters, w and v, 

respectively, are uncorrelated white Gaussian sequences with 

zero mean and variances (covariances) defined by: 

E [wi*wjjT] r Qj^ i=k (3-2) 
0 ijlls. 

E [vi*vk] = Rjj. i=k (3-3) 
0 i/k 

E [wi*vij] = 0 for all i and k (3-4) 

The values of Q and R are calculated prior to execution of 

the Kalman filter. 

Each iteration of the Kalman filter is started with an a 

priori estimate, x"k, which is the expected value of the 

state just before assimilating the measurement. The 

estimation error, e'jj, between the actual state, x^» 
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and the a priori state estimate, x~je is defined by (3-5). 

S"k = ak - A"k (3-5) 

The estimation error is assumed to have zero mean and a 

covariance matrix, defined as 

p-k = E[e-k g-k?] = EC(xk - S-k)(2Sk - x-k)T] (3-6) 

The P~1j matrix describes the confidence level of the a 

priori state estimate accuracy. 

After the current measurement, z^, the a priori state 

estimate is updated to incorporate the measurement data. The 

a posteriori estimate, xjj, is defined by the following 

update equation (3-7), 

Ak - A"k + Ek(zk - HkÉ"k) (3-7) 

where is the Kalman gain vector at time, t^. The 

n-dimensional Kalman gain vector contains the weighting 

factors used to combine the new measurement with the a priori 

estimate to achieve an optimal a posteriori estimate. An 

optimum estimate minimizes the mean-square error of the 

updated estimate. The Kalman gain vector which produces an 

optimal estimate takes into account the confidence in the a 

priori estimate, P"k, and the reliability of the 

measurement, Rk- The Kalman gain is given by (3-8). 
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Sk = P-kakT(HkP-kakT + Bk)-' (3-8) 

With a scalar measurement, the inversion in the Kalman gain 

is just a scalar inversion. 

The error covariance matrix for the a posteriori state 

estimate is calculated from 

Pk = (I - KkHk)P"k (3-9) 

where I is an (n x n) identity matrix. 

At this point, an updated state estimate and its error 

covariance matrix have been calculated for the measurement at 

step k. To prepare for the next iteration of the Kalman 

filter, an a priori state estimate, x"k+i, and an a 

priori error covariance matrix, P~k+1> must be projected 

ahead from their a posteriori estimates. *~k+l for the 

next measurement can be estimated by taking the expected 

value of the state equation (3-la). Since the expected value 

of wjj is zero, the a priori estimate becomes 

*"k+l = ®k*k • (3-10) 

The a priori error covariance matrix is projected ahead by 

P"k+1 = ^k^k^k"^ + Ok- (3-11) 

The recursive Kalman filter algorithm consists of the 

Kalman gain equation (3-8), state estimate (3-7) and error 
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Govariance (3-9) update equations, and state estimate (3-10) 

and error covariance (3-11) projection equations. Initially, 

the Kalman filter must be provided with an estimate of the 

state vector, xq", and its error covariance matrix, 

Pq". a block diagram of the Kalman filter" algorithm is 

shown in Figure 3-1. 

k-4-1 
Kk"-Pk'^î<'-'k''k'^k + Rk) ^ 

xr + Kk(zk - Hk^k) 

Figure 3-1. Block diagram of the Kalman filter algorithm 

The Kalman filter can also provide multiple step ahead 

forecasts. The N-step ahead forecast equation is 

x"k+N = @k+N,kAk (3-12) 

where @k+N,k is the N-step ahead transition matrix. This 

forecast equation is kept separate from the recursive Kalman 

filter algorithm. 
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Kalman Filter Models 

To use the Gauss-Markov, damped cosine, or ARIMA models 

for forecasting market prices, the Kalman filter parameters 

must be determined for each model. The state transition 

matrix, and the connection matrix, H, can be determined 

directly from the discrete state equations (3-1). The 

measurement noise variance, R, is determined from the 

measurement data. The process noise covariance matrix, Q, is 

calculated from the state equations. Initial estimates of 

the state vector, x~, and error covariance matrix, P~, 

are derived from any prior knowledge of the process being 

modeled. If this knowledge is not available, the states are 

normally initialized to zero and the error covariance matrix 

is started with relatively large values to signify the 

uncertainty of the state estimate. Numerical calculations 

presented in this section are derived from the DJT #1 

realization. 

Measurement noise for a given market will be assumed to 

be independent of which model is being used. For market 

prices, the only measurement error will be the round-off 

error occurring from the quantitization of the price. Stock 

prices report their value in eighth of a dollar increments. 

If a stock price is assumed to be uniformly distributed over 

its quantitization interval, then its noise variance is 

defined as 
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R = 
rA/2 ^ 
(u2/A) du = a2/12 

-A/2 
(3-13) 

where A is the quantitization interval. For an individual 

stock price, A = $0.125 and R = 0.0013. 

The process noise matrix, Q, is calculated from (3-14). 

Q = E[ ] (3-14) 

For the Gauss-Markov and damped cosine models, the white 

noise vector, Wj^, is defined as 

Wjj = 
rtk+i 

^(tk+i-u)*G*w(u) du 
tk 

(3-15) 

where G*w(t) are the driving functions for the continuous 

state equations. Depending on G, may be comprised of 

multiple white noise sources, w^, in which case the 

off-diagonal terms of Q will be non-zero. For the ARIMA 

models, the elements of are all scaled versions of the 

single white noise source. for the ARIMA (1,1,1) model 

is shown in (3-16). 

Wk = Wk 
-0lWk 

(3-16) 

Q is then dependent on the moving average (MA) terms, 0^, 

in the ARIMA model. 

The starting value of the state vector, xq"# can 
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either be the last known value for each state or can be the 

expected value of the respective state equation. For the 

market price analysis, the state estimates were initialized 

at their nominal average values as determined by DJT #1 data. 

The initial value for the error covariance matrix, 

Pq"» is based on how the initial state estimates were 

determined. If a state is initialized with its last known 

value, then its error (co)variance represents the error that 

could occur after one time period. If the state is 

initialized with its nominal average value, then the error 

(CO)variance is calculated from the corresponding variances 

in the data used to obtain the averages. 

The state equations listed below are from the Models 

section of the Market Analysis chapter. The Gauss-Markov 

model also includes a white noise source, W2, to account 

for the large white noise term in the first difference of the 

DJT data. The damped cosine model is not included in this 

section since the DJT #1 data did not fit this model. 

Random Walk 

The state equations for the random walk model are 

xk+i = l*Xk + Wk (3-17a) 

yk = l*Xk + Vk (3-17b) 

Note that $ = 1 and H = 1. Solving (3-17a) for Wk shows 

that the white sequence is equal to the first difference of 



www.manaraa.com

49 

the price. Therefore, Q for the random walk model is equal 

to the variance of the first difference, or Q = 2.9353 for 

DJT #1. The state estimate is initialized to the mean of the 

DJT #1 realization, xq" = 640.75, and the error 

covariance is initialized to the variance of the DJT #1 data, 

PO" = 1810. 

Gauss-Markov 

The state equations for the Gauss-Markov plus white 

noise model are shown in (3-18). Although, the Gauss-Markov 

model is a single state model, a second state is required for 

the discrete integration to convert the first difference 

model to an actual market price model. 

xi(k+l) - 1.0 e-PT XI (k) + 

X2(k+1) 0.0 e-PT 

X
 

t 

y(k) = [1 0] xi(k) 

X2(k) 

+ v(k) 

Wi(k) + Wgfk+l) 

Wi(k) 

(3-18a) 

(3-18b) 

The state transition matrix for the Gauss-Markov model is 

$ = 

1 
»-

» 0
 1 -3
. 

= 1.0 0.7239 (3-19) 

0 e-PT 0.0 0.7239 

and the connection matrix is 

H = [ 1 0 ] . 

The covariance matrix for the process noise is 

(3-20) 
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Q = EC(Wi + W2)2] 

• E[Wi2] 

E[Wi2] - 2.9383 0.3201 (3-21) 

E[Wi2] 0.3201 0.3201 . 

The initial state vector for DJT #1 is 

640.75 (3-22) 

0 . 0 0  

and the initial state covariance matrix is 

Pq" = 1810.0 2.4359 (3-23) 

2.4359 0.6726 

ARIMA model 

The first differences of the three DJT data sets were 

realized with an ARIMA (1,0,1) model. When the actual price 

is to be forecast instead of the first difference, a discrete 

integration must be included in the model. Therefore, the 

ARIMA (1,0,1) model is converted to an ARIMA (1,1,1) model. 

The ARIMA (1,1,1) model has the forecast equation shown in 

(3-24). 

Zk = (l+#i)Zk-l - #lZk-2 - Gl^k-i + Wk (3-24) 

Using the conversion procedure in the Market Analysis 

chapter, the ARIMA (1,1,1) state equations are: 
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xi(k+l) — (1+01) 1 XI (k) + W(k) 

X2(k+1) -01 0 X2(k) - 0 l W(k) 

Z(k) = C 1 0 ] xi(k) 

X2(k) 

+ v(k) 

(3-25a) 

(3-25b) 

An additional state is also required for the ARIMA (1,1,1) 

model to provide the discrete integration. From the state 

equations, the state transition matrix is 

@ = 1+01 

-01 

1.7222 

-0.7222 

(3-26) 

and the connection matrix is 

H = [ 1 0 ]. (3-27) 

The process noise covariance matrix, initial state estimate, 

and initial error covariance matrix for the ARIMA (1,1,1) are 

shown in (3-28), (3-29), and (3-30), respectively. 

Q = E[Wk2] _8iE[Wk2] 

-0lE[Wk2] 8i2E[Wk2] 

2 . 8 2  

•1.63 

-1.63 

0.95 

(3-28) 

É0~ = 640.75 

-462.75 

(3-29) 

Po" = 1810.0 -1307.2 

-1307.2 945.0 

(3-30) 
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Adaptive Kalman Filter Algorithm 

An adaptive Kalman filter provides a method of realizing 

a process for which the system model is not well-defined. 

The filter allows the model parameters to vary such that the 

model adapts to the incoming data. This parameter variation 

allows the adaptive filter to model a system in which the 

process parameters are either not known exactly or may be 

time-varying [18]. The adaptive filter modifies the model 

parameters after each iteration to incorporate any 

information provided by the new measurement. If an unknown 

parameter is a random constant, the adaptive filter uses the 

measurement data to drive the model parameter towards the 

process parameter value. The steady state value of the model 

parameter will reflect the actual process parameter. When a 

process parameter is assumed to be time-varying, the filter 

allows the model parameter to track the process parameter. 

The model parameter varies slowly, never reaching a steady 

state value. This variability allows the adaptive filter to 

model non-stationary processes. The adaptive Kalman filter 

used in this study was based on ARIMA modelling of the 

process. 

The rate at which the adaptive Kalman filter tracks the 

process is regulated by an adaptive control. The adaptive 

control is also responsible for guaranteeing that the filter 

remains adaptive. In the basic Kalman filter, the state 
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estimates become more accurate as the filter operates and, 

therefore, the error covariance is continually reduced to 

reflect this accuracy. This, in turn, causes the Kalman gain 

to place less weight on newer measurements. In the adaptive 

Kalman filter, the parameters may be time-varying, in which 

case the accuracy of the state estimates is limited. To 

allow the filter to remain adaptive, the adaptive control 

constantly increases the a priori error covariance matrix 

which reduces the confidence in the parameter estimate. This 

prevents the Kalman gain from becoming too small and not 

providing sufficient weight to new data. 

For the adaptive Kalman filter, the unknown parameters 

become elements of the state vector. The state equation for 

a parameter is then dependent on whether it is assumed to be 

a random constant, or time-varying. If a parameter is 

assumed to be a random constant, then its state equation is 

Xk+1 = Xk- (3-31) 

If the parameter is assumed to be time-varying, then the 

state is modelled as a random walk process with the following 

state equation: 

Xk+1 = Xk + Wk- (3-32) 

The state and measurement equations for the adaptive 

Kalman Filter are: 
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*k+l = + GHk 

Zk - Bk*^k "*• Vk 

(3-33a) 

(3-33b) 

where the state transition matrix, $, is an nxn identity 

matrix and G is a known (nxm) matrix connecting the white 

sequences to the state vector. 

The measurement equation (3-33b) now defines the 

relationship between the measurement, Z]^, and the model 

parameters, xjj. If any of the parameters are 

autoregressive (AR) terms, then the measurement connection 

matrix, H, contains data from previous measurements. For 

example, if the x^ term defined the first AR parameter, 

then the term would be Z^-i. Elements of H 

which correspond to AR parameters must be updated after each 

measurement. 

For the adaptive Kalman filter suggested by Sastri [30], 

the measurement noise, v, and process noise, W, may be 

correlated as shown in (3-34). 

where Ç is an m-dimensional correlation vector. This 

correlation vector is necessary for the conversion of the 

ARIMA model to adaptive Kalman filter format. 

The adaptive Kalman filter algorithm utilized for this 

project is very similar to the Kalman filter described 

E[v * W] = Ç (3-34) 
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previously. The recursive loop contains a Kalman gain 

equation, update equations for the state estimate and its 

error covariance matrix, and project ahead equations for the 

state estimate and error covariance matrix. The individual 

equations are changed slightly to account for any correlation 

between the process and measurement noise. 

The adaptive Kalman filter is initialized with an a 

priori state estimate, x~, and an a priori error covariance 

matrix, P~, before every iteration. If the state vector 

contains AR terms, then an updated measurement connection 

matrix, H, is also provided at the start of each iteration. 

The first step in the adaptive Kalman filter is to 

calculate the Kalman gain vector. The Kalman gain vector 

determines how the estimate error will be combined with the a 

priori state estimate, to arrive at an updated state 

estimate, x. The Kalman gain vector for the adaptive 

algorithm is shown in (3-35). 

K = (P-H? + GC)[HP-HT + HGÇ + (HGC)T + R]-l (3-35) 

Since the Kalman gain is a function of H, the Kalman gain 

vector will be also be dependent on previous data if the 

state vector contains AR parameters. 

After the measurement for step k is collected, the a 

posteriori state estimate and its error covariance matrix are 

calculated. The state estimate is updated as shown in 
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(3-36). 

âk = â~k + Kk(ak ~ Ëkâ~k) (3-36) 

The update equation for the a posteriori error covariance 

matrix is shown in (3-37). 

When the H matrix is data dependent, the P matrix also 

becomes related to past data since it is a function of H. 

Therefore, P is a conditional error covariance matrix, 

conditioned on the input data [18]. 

To prepare the adaptive Kalman filter for the next 

iteration, a priori estimates must be determined for the 

state vector and its error covariance matrix. If the state 

vector contains AR terms, then the H matrix is also updated. 

The equations for projecting the state estimate and its error 

covariance matrix ahead to the k+1 step are shown in (3-38) 

and (3-39), respectively. 

The error covariance matrix project ahead equation (3-39) 

contains the adaptive control, B, which controls the speed at 

which the filter adapts to the process. Caution must be used 

not to set B too large as this will cause the filter to 

Pk = p"k - SkCHkP'k + (3-37) 

A _  A  
X k+1 = @xk 

P-k+1 = B($Pk$T + GQGT), B > 1 (3-39) 

(3-38) 
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become unstable. The H matrix is updated by replacing the 

elements corresponding to AR parameters with the latest 

measurement data. 

The algorithm for the adaptive Kalman filter is listed 

in Figure 3-2. 

0. Initialize with Hg, x~o and P~o-

1. Kk = (P-kH^k + GÇ)[HkP-kHkT + HfeGC + (i3kGÇ)T + R]"! 

2• Xk - ̂  k •*" Ek(zk Bk^S k) 

3. Pk = P~k - Kk(iikP"k + ÇTqT) 

4. É"k+1 = ^Ak 

5. P'k+l = B(@Pk@T + GQQT), B > 1 

6. Update Hk+1 with lastest measurement data, 
if required 

7. k = k+1 

8. Go to 1. 

Figure 3-2. Adaptive Kalman filter algorithm [30] 

Adaptive Kalman Filter Models 

The adaptive Kalman filter used in this project was 

created from an ARIMA (1,1,1) model. This model requires 2 

states: one state, , is used for the AR term, and 

the second state, xg, tracks the accumulated white noise 

inputs. Both states use the random walk model (3-32) to 

allow parameter variation. 
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The state description for the ARIMA (1,1,1) adaptive 

Kalman filter is shown in (3-40). 

xi(k+l) 1 0 xi(k) + 1 0 Wi(k) 

X2(k+1) 0 1 X2(k) 0 1 W2(k) 

(3-40a) 

Zje - [Zjj-i 1] xi(k) 

X2(k) 

vk (3-40b) 

The state transition matrix, $, and the process noise 

connection matrix, G, are (2x2) identity matrices. The first 

element of the measurement connection matrix, H, is always 

the previous measurement as shown in (3-41). 

H  =  [  Z k - i  1  ]  (3-41) 

This corresponds to the first element of the state vector, 

XI, which represents the AR term, . The H matrix must 

be updated before each iteration of the Kalman filter. 

The expressions for Wg and v are obtained from the 

second state equation and the measurement equation. Solving 

the measurement equation (3-40b) for xg and substituting it 

into the state equation for X2 (3-40a) provides an equation 

similar to the ARIMA (1,1,1) forecast equation (3-24), This 

new equation is shown in (3-42). 

Zk = (l+xi)Zk-i - xiZk-2 - Vk-1 + Vk + W2k (3-42) 
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Comparing (3-42) and the ARIMA (1,1,1) forecast equation, the 

following relationships are noted. 

where w* is substituted for w in (3-24). Using these 

equations, the measurement noise variance, R, the process 

noise variance, Q22» and the covariance between W2 and v 

can be calculated as shown in (3-45), (3-46), and (3-47), 

respectively. 

The state is also assumed to vary, but very 

slowly. The process noise variance for reflects this by 

using a small value for Qn. The change in xi is also 

assumed to be independent of the change in X2 and, thus, 

also independent of v. For this reason, the terms Qi2> 

@21, and Ci are all set equal to zero. 

The initial estimate for the state vector is shown in 

(3-48). XI is initialized with the optimum value 

determined for the DJT #1 data. The X2 estimate was 

Vk = Giw'k 

W2k ~ (l~0l)Wk 

(3-43) 

(3-44) 

R = 0i2 E[W'2] = 0.9460 

Q22 = (1-8i)2 E[w'2] = 0.4493 

02 = 81(1-81) ECW'2] = 0.6873 (3-47) 

(3-46) 

(3-45) 

* 0 0.7222 
178.00 

(3-48) 
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calculated so the expected value of the measurement equation 

(3-40b) would yield the DJT #1 mean, or 640.75. 

The error covariance matrix was initialized to 

P-Q = 0.0078 0.0000 
0.0000 0.9460 

(3-49) 

The Pii term is the variance of the 9^1 estimate as 

determined by the ARIMA estimation procedure. The P22 term 

is calculated from the measurement equation (3-40b). 

The adaptive control value, B = 1.0001, was selected as 

to produce the minimum MSE for the DJT #1 data. 

Kalman Filter Results 

Results for the Kalman filter and adaptive Kalman Filter 

are based on the three DJT realizations. The Kalman and 

adaptive filters are used to forecast the next hourly price 

(1-step ahead) using the various models. The MSE of the 

forecasts are calculated to determine model usefulness. 

Tests on the DJT #1 data used the last 536 out of 1036 

samples to calculate the MSE, For the DJT #2 and #3 

realizations, the MSE was calculated on the last 796 out of 

896 data points. The first 100 data samples in DJT #2 and #3 

were used to initialize the filter. Since model parameters 

were optimized for the DJT #1, the DJT #2 and #3 data sets 

are used to determine if a model also applies to other time 

frames in the same process. 
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The trivial random walk model is used as a baseline 

measurement for the tests. The random walk model forecasts 

that the next price will be same as the last price. If there 

is correlation present in the process, then the non-trivial 

models should be able to outperform the random walk model in 

terms of MSE. The MSEs for one-step ahead forecasts are 

shown in Table 3-1. The percentage change from the random 

walk model is shown in parentheses. 

Table 3-1. MSE for 1-step ahead foreasts 

Model DJT #1 DJT #2 DJT #3 

Random Walk 3.4016 4.1730 3.5781 

Gauss-Markov 3.2600 4.1389 3.5337 
(-4.2) (-0.8) (-0.7) 

ARIMA (1,1,1) 3.2582 4.1173 3.5138 
(-4.2) (-1.3) (-1.8) 

Adaptive filter 3.2579 4.1097 3.5069 
ARIMA(1,1,1) (-4.2) (-1.5) (-2.0) 

Each suggested model had a lower MSE than the random 

walk model. This was true for all three data sets. The 

maximum MSE improvement ranged from -4.2% for DJT #1 to -1.5% 

for DJT #2. These small percentages highlight the fact that 

the DJT's first difference is very nearly pure white noise. 

The best results were provided by the adaptive Kalman 

filter, although the improvement was only 0.2% better than 
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the basic Kalman filter for the DJT #2 and #3 realizations. 

Between the two basic Kalman filter models, the ARIMA (1,1,1) 

model provided a lower MSE, especially for the DJT #2 and #3 

realizations. 

Summary 

The Kalman filter is a discrete state^space solution to 

linear filtering and prediction problems. Its recursive 

algorithm produces an optimal estimate of a stochastic 

process corrupted by additive white noise. The Kalman filter 

parameters are formulated from a state description of the 

random process to be modeled. 

This project used the Kalman filter to forecast future 

values of the Dow Jones 20 Transportations Index (DJT). The 

random walk, Gauss-Markov, and ARIMA (1,1,1) models discussed 

in the Market Analysis chapter are used by the Kalman filter 

to produce these forecasts. 

An adaptive Kalman filter was introduced as a tool for 

forecasting prices when the random process model has unknown 

variable parameters. The adaptive filter continually 

estimates the model parameters from the most recent data. 

Development of the adaptive Kalman filter for the ARIMA 

(1,1,1) and DJT data were examined. 

The three DJT realizations were used to test the 

forecast accuracy of the Kalman filter models. Model 

comparisons were based on minimum MSE using the random walk 
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model as a baseline. The Gauss-Markov, ARIMA (1,1,1), and 

adaptive ARIMA (1,1,1) Kalman filters provided a smaller MSE 

that the random walk model for all three DJT realizations. 

The adaptive filter produced the best results in all three 

cases. 
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BUY AND SELL STRATEGIES 

Introduction 

The ability to produce optimum forecasts of future 

market prices is not the final solution to the problem of 

profiting in the markets. There must be a method of 

utilizing the forecasts to achieve maximum profits. Since 

the Kalman Filter forecasts are based on minimizing MSE, a 

buy/sell strategy which increases profits as the MSE 

decreases would be desirable. 

Forecast errors generated by the Kalman filter are 

assumed to be normally distributed. The probability that the 

actual price change will be positive (4-1) can be 

approximated using the forecast and the Normal distribution. 

P(A.$>0) = 1 - P(A$<0) * 1 -
ro  

N(A$,MSE) d(A$) (4-1) 

where N(A&,MSE) is a normal distribution with mean of and 

a variance equal to the MSE of the forecasts. A diagram 

showing the probabilistic relationship between the actual 

price change and the forecast price range is shown in Figure 

4-1. This relationship is exploited by the buy and sell 

strategies. 

Buy and sell strategies tested were based on using the 

market either as 1) a speculator or 2) a consumer. The 

speculator scenario tries to maximize profits by buying or 



www.manaraa.com

65 

p(A$| A$) 

pC A S >o) 

y N(.AS.MSE) 

C y PCAS>O) 

A #  

Figure 4-1. Relationship between actual and forecast price 

selling stock each hour depending on the Kalman filter 

forecast for the next hour. The consumer scenario assumes 

that a contract, e.g., corn, must be bought once a day, or 

once every two days, or once a week. The consumer waits to 

make a purchase until the Kalman filter forecasts the price 

to increase. 

The buy/sell strategies are tested on the data from the 

three Dow Jones Transportation (DJT) realizations. The 

adaptive Kalman filter presented in the last chapter provides 

the price forecasts on which the buy/sell decisions are 

The speculator strategy used the Kalman filter forecast 

to determine whether to buy or sell stock. Testing for the 

speculator strategy included step, hysteresis, linear, and 

quadratic strategies. Each strategy was tested with and 

change 

based. 

Speculator Strategy 
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without commissions being charged. 

Trading for this scenario is performed according to the 

following trading rules. No transactions are allowed between 

the market closing and the following opening, i.e., 

overnight. The maximum amount of stock purchased each 

transaction is limited by the current assets (cash plus stock 

value) which are re-evaluated after each measurement, 

leveraging is not allowed. Stock transactions can be made in 

odd lots and may include fractional shares. There is no 

slippage, i.e., the transaction price is the same as the last 

measurement. The analysis begins with $10,000 in assets and 

half of that amount is invested in stock. Profit 

comparisions are made over the last 536 data points of DJT #1 

and the last 796 data points of DJT #2 and #3. (These are 

the same data used for the MSE comparison in the last 

chapter.) 

A buy-and-hold strategy was used as a baseline for 

profit comparison. The buy-and-hold strategy invests all the 

assets at the beginning of the comparison period and lets the 

stock accumulate over the period. No other buying or selling 

takes place during the test. The buy-and-hold strategy 

reflects ciny price change in the stock. Comparing the buy 

and sell strategies to the buy-and-hold strategy shows 

whether the buying and selling increased profits over what 

the stock would have done on its own. 
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A second baseline used for profit comparison was 

slope-projection. The premise behind this strategy is that 

the price difference between the last price and the next will 

continue along the same slope as the last price difference, 

i.e., the price differences will be equal. If the last price 

difference was positive, then the assets are converted to 

shares. If the last difference was negative, then all the 

shares are converted to cash. No transactions occur if the 

price difference is in a dead-zone around zero. The width of 

the dead-zone was adjusted to maximize profits for the DJT #1 

data. 

Each speculator strategy is controlled by a maximum 

investment factor, a minimum investment factor, and a bias 

value. The linear and quadratic strategies also have a clip 

value. These values are optimized for each strategy to 

provide the maximum profit for the DJT #1 data set. The 

maximum and minimum investment factors limit the percentage 

of assets that can be invested at each transaction. The 

maximum investment factor ranges between 50 and 100% of the 

assets and the minimum investment factor ranges between 0 and 

50% of the assets. For step, linear, and quadratic 

strategies, the bias value provides an interval where the 

investment factor is set to an average investment, or 50% of 

the assets. For the hysteresis strategy, the bias value 

specifies the hysteresis window size. The bias value is 
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effective when the price change forecast is small, since the 

probabilities of profit and loss are almost equal. The clip 

value determines where the buy and sell strategy reaches the 

investment limits. A forecast value exceeding the clip value 

will invest shares at the minimum or maximum percentage. 

The step function strategy invests at either the minimum 

or maximum investment factor when the forecast price is 

outside the bias values. If the forecast is within the bias 

values, then the investment is set at 50% of the current 

assets. The step function is shown in Figure 4-2. 

INVESTMENT 

FACTOR 

MAX 

—BIAS 

BIAS 

MIN 

Aè 

Figure 4-2. Step function speculator strategy 

The hysteresis strategy, shown in Figure 4-3, invests 

either the maximum or minimum limits of its assets on each 

transaction. When the forecast price change is inside the 

bias interval, no transaction occurs and the investment 

remains at the previous value. 



www.manaraa.com

69 

INVESTMENT 

FACTOR 

MAX 

BIAS 
A $  

BIAS 

MIN 

Figure 4-3. Hysteresis speculation strategy 

The linear strategy sets the number of shares invested 

proportional to the price change forecast. The linear 

function reaches the investment limits when the forecast 

reaches the clip value. The bias value sets the investment 

factor to 50%. Forecast values between the bias and clip 

values cause the investment factor to follow a linear slope 

in that region. The linear strategy is shown in Figure 4-4. 

INVESTMENT 

FACTOR 

MAX 

MIN 

Figure 4-4. Linear speculator strategy 
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ïii." quadratic speculator strategy is similar to the 

linear strategy. Bias and clip values are used to determine 

the quadratic function. Figure 4-5 displays the quadratic 

speculator strategy. If the forecast lies between the bias 

and clip values, then the percentage of assets invested in 

stock is determined by the quadratic curve. The closer the 

forecast is to the clip value, the closer the percentage is 

to the maximum or minimum limit. 

INVESTMENT 

FACTOR 

MAX 

—CLIP 
1 

—BIAS 
1 SDx 1 1 1 1 

BIAS 
1 

CLIP 

_MIN 

Figure 4-5. Quadratic speculator strategy 

The speculator strategies were tested on the three DJT 

realizations with no broker commissions on any transaction. 

The optimum value for the bias and clip values for the DJT #1 

realization are shown in Table 4-1. The minimum and maximum 

investment factors were 0% and 100%, respectively, for each 

strategy. 

A running comparison of the assets using the hysteresis 
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Table 4-1. Optimized bias and clip values for 
DJT #1 with no commission 

Strategy Bias Clip 

Step 0.06 N/A 

Hysteresis 0.00 N/A 

Linear 0.06 0.07 

Quadratic 0.05 0.06 

strategy and the buy-and-hold strategy is shown in Figure 4-6 

for DJT #1. The hysteresis strategy does not exhibit any 

dramatic decrease in assets similar to the buy-and-hold 

strategy. 

11790.08r 

HYSTERESIS STRATEGY 

11000.00 

MYâHÔ'li'i» 

10500.00 -

1.00 

9900.00+— 
0.00 300.00 

Figure 4-6. Running asset comparison between hysteresis 
strategy and buy-and-hold strategy for DJT #1 
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Table 4-2 shows the results of the speculator strategies 

with no commission charged. The numbers in parentheses are 

the percentage change from the buy-and-hold strategy. 

All the speculator strategies out-performed the 

buy-and-hold strategy in all three tests. They also showed a 

profit from the starting value of $10,000. The step function 

strategy produced the best results for DJT #1, the hysteresis 

strategy the best for DJT#2, and the linear strategy provided 

the greatest profit for DJT #3. 

Table 4-2. Final asset comparison for speculator strategies 
with no commission 

Strategy DJT #1 DJT #2 DJT #3 

Buy & Hold $10,054 $ 7,814 $10,613 

Slope-projection $11,847 $11,084 $10,323 
(17.8) (41.8) (-2.7) 

Step $11,744 $10,818 $11,765 
(16.8) (38.4) (10.9) 

Hysteresis $11,701 $11,291 $11,827 
(16.4) (44.5) (11.4) 

Linear $11,711 $10,863 $11,891 
(16.5) (39.0) (12.0) 

Quadratic $11,711 $10,902 $11,784 
(16.5) (39.5) (11.0) 

Slope-projection had greater profits than the Kalman 

filter strategies for DJT #1, but the slope-projection 

profits were less for DJT #2 and #3. slope-projection may 
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provide greater profits on a given data sample, but the 

Kalman filter strategies are more profitable on the average. 

The speculator strategies were tested again with a 

commission rate of 0.25%. The commission rate was applied to 

the amount of cash exchanged during the transaction. The 

strategies were again optimized to provide the maximum profit 

for DJT #1. The step, linear and quadratic strategies 

produced the greatest profit, $10025.92, when the investment 

was 50% of the assets for all transactions, i.e., they 

reverted to a simple buy-and-hold strategy using half of the 

assets. The hysteresis strategy was the only one which 

proved profitable. The clip value for the hysteresis 

strategy was $0.21. Table 4-3 shows the results for the 

buy-and-hold, slope-projection, and hysteresis strategies 

with a commission rate of 0.25%. The numbers in parentheses 

again represent the percentage change from the respective 

buy-and-hold value. 

Table 4-3. Asset comparison for speculator strategies with 
commission 

Strategy DJT #1 DJT #2 DJT #3 

Buy-and-hold $10,054 $ 7,814 $10,613 

Slope-projection $10,259 $ 9,560 $ 9,835 
( 2.0) (22.3) (-7.3) 

Hysteresis $10,484 $ 8,613 $10,046 
( 4.3) (10.2) (-5.3) 
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The hysteresis strategy did not provide a consistent 

inprovement over the results shown by the buy-and-hold 

strategy. In DJT #2 tests, the hysteresis strategy was more 

profitable than the buy-and-hold strategy, but the final 

assets were 14% less than the starting value. In the DJT #3 

test, the hysteresis strategy did increase assets, but the 

final assets were less than those achieved by the 

buy-and-hold strategy. 

Consumer Strategy 

This strategy is based upon a consumer requiring 

continual purchasing of goods to keep his operation running. 

The consumer waits to make the purchase until the Kalman 

filter forecasts an increase in price. After the purchase is 

made, the consumer still uses the Kalman filter forecasts. 

If the forecast price drops below the purchase price before 

the end of the buying period, then the consumer sells the 

previous contract purchased and waits for the Kalman filter 

to predict the next price increase. The consumer buys 1 

contract or, for the DJT data, one share at each purchase. 

The consumer strategy, shown in Figure 4-7, includes a 

decision point that determines what forecast price change to 

use as a buy/wait threshold. If the price change forecast is 

below this decision point, the consumer waits to make his 

purchase. The decision point may be at a positive or 

negative value. The decision point was chosen to minimize 
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DECISION 

BUY 

WAIT 

DECISION 
THRESHOLD 

Figure 4-7. Diagram of decision process for consumer 
strategy-

expenses for DJT #1. 

The consumer strategy is compared to two baselines. The 

first baseline has the consumer make the purchase at the 

opening price on the first day of the buying period. The 

second baseline uses the closing price on the last day of the 

buying period. The comparison period was enlarged slightly 

in each of the DJT realizations so that the comparison would 

run over an integral number of days. The DJT #1 test used 

the last 539 data points, or 77 days. DJT #2 and #3 test 

used the last 798 data samples, or 114 days. There was no 

commission charged on transactions. The tests were conducted 

with one, two, three, four, and five days in the buying 

period. The results for the consumer strategy are shown in 

Table 4-4. 

Kalman filter forecasting did reduce the expenses for 

all three DJT realizations, but the amount of reduction was 

never more than 0.7%. 
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Table 4-4. Expense comparison for consumer strategy 

Strategy DJT #1 DJT #2 DJT #3 

1 Day Period 
Open $51,772 $57,576 $65,559 

Close $51,785 $57,459 $65,585 

Kalman filter $51,697 $57,429 $65,506 

2 Day Period 
Open $26,220 $28,832 $32,747 

Close $26,230 $28,718 $32,782 

Kalman filter $26,128 $27,670 $32,699 

3 Day Period 
Open $18,141 $19,788 $22,401 

Close $18,145 $19,665 $22,433 

Kalman filter $18,047 $19,642 $22,342 

4 Day Period 
Open $13,439 $14,754 $16,642 

Close $13,443 $14,622 $16,679 

Kalman filter $13,352 $14,607 $16,587 

5 Day Period 
Open $10,748 $12,231 $13,765 

Close $10,741 $12,088 $13,806 

Kalman filter $10,678 $12,061 $13,705 
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Summary 

This section examined the conversion of Kalman filter 

price forecasts to increased profits in the market place. 

This conversion was studied from the viewpoints of a 

speculator and a consumer. The speculator strategy used 

step, hysteresis, linear, and quadratic functions to improve 

profits over slope-projection and buy-and-hold strategies. 

The speculator strategies were more profitable than the 

buy-and-hold in each case and more successful than 

slope-projection on the average. If the speculator must pay 

a commission on each transaction, then then speculator 

strategies will not increase the profits. The speculator 

strategy search was not exhaustive, but it did show that the 

Kalman filter could be used to increase profits. 

The consumer strategy tried to reduce operational 

expenses by forecasting when the market price was rising. 

The Kalman filter forecasts did not provide significant 

improvement over buying on the open or the close. Any 

savings realized were very small in comparison to the large 

expenses accrued. 
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SUMMARY 

This project examined the use of a Kalman filter to 

forecast market prices. The first step was to determine if 

there was any correlation present in the market data. If no 

correlation was present, then the market process followed the 

trivial random walk model and a Kalman filter would not 

provide any increased forecasting accuracy. If correlation 

was found to be present, the market process was modelled 

using the continuous Gauss-Markov and damped cosine models or 

the discrete Box and Jenkin's ARIMA models. These models are 

convertible to a discrete state space format for use in a 

Kalman filter. 

Market analysis was performed on stock indexes and 

individual commodity markets. Significant correlation was 

found in the hourly data for the Dow Jones Transportation and 

Standard and Poor's Financial stock indexes. These 

correlation patterns were not present when the indexes were 

sampled daily, weekly, or monthly. Corn, soybeans, U.S. 

Treasury bonds, gold, and the S&P 500 Futures were the 

commodity markets examined. These commodities did not 

provide any significant correlation when they were sampled 

every half-hour. Corn did exhibit a small amount of 

correlation for minute by minute sampling and for transaction 

sampling. However, the correlation patterns exhibited were 

of very short duration. U.S. Treasury bonds, S&P 500 
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Futures, and gold had some significant lags when transaction 

data was studied, but no correlation pattern was apparent. 

Correlation was very small in the commodity markets studied, 

but enough statistically significant ACF spikes were present 

to suggest that the commodities might not be random walk 

processes. 

With stock indexes showing more correlation patterns 

than individual markets, a portfolio was constructed from 

two commodities to determine the effects of averaging. A 

significant cross correlation between the two commodities 

provided an autocorrelation pattern for the portfolio when 

there was no autocorrelation pattern for the two commodities 

individually. 

The Gauss-Markov and ARIMA (1,1,1) models were converted 

to Kalman filter format to forecast the three DJT 

realizations. The ARIMA (1,1,1) model was also placed in an 

adaptive Kalman filter format. The Kalman filter forecasts 

were more accurate than forecasts provided by the random walk 

model. The best results were produced by the ARIMA (1,1,1) 

model in the adaptive Kalman filter. 

Two buy and sell strategies were tested to see if the 

more accurate Kalman filter forecasts could be used to 

increase profits. The speculator strategy found that the 

Kalman filter could be used to forecast hourly prices and 

provide a greater profit than a buy-and-hold or 
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slope-projection strategy. The speculator strategy could not 

consistently produce a profit if commissions were charged on 

each transaction. A consumer strategy failed to 

significantly reduce expenses when the Kalman filter was used 

to forecast price increases. 

In conclusion, it appears that sufficient correlation 

can be found in the stock indexes to use a Kalman filter to 

produce improved forecasts. A method of using the stock 

index forecasts to benefit in traded market(s) must be 

determined. If a market with significant correlation is 

found, the buy and sell testing has shown that the Kalman 

filter forecasts can be used to increase profits. 

An area which should be examined further is the creation 

of a portfolio. An investor may be able to profit by trading 

a small portfolio instead of single markets. The idea of 

combining markets which have a significant cross-correlation 

may prove beneficial. 
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APPENDIX: SOFTWARE LISTINGS 

Autocorrelation and Partial Autocorrelation 

The ACF and PACE program reads in the sample realization 

from an external file. The first difference of the data is 

calculated to provide a stationary working series. The first 

difference mean is then subtracted from the data to simplify 

the calculation of the autocovariance terms. Twelve lags are 

determined for both the ACF and PACE. The lag coefficients 

are normalized such that the coefficient for lag zero is 1, 

To determine statistical significance, a 95% confidence level 

is calculated for each lag. 

PROGRAM ACORR 
C 

REAL RHO(50),PACE(50),PHI(2,50),S.T,PHINUM,PHIDEN 
REAL SUM,INPUT(2000),MEANSQ,NREAL,RHOSUM 
INTEGER N,TAU,NACF,NPACF 

C 
NACF =12 
NPACF =12 

C 

C OPEN DATA FILE AND READ IN DATA 
OPENd, FILE= ' DOWJONES. TRNSPRTl. HOUR' ) 
N=0 

100 N = N+1 
READ(1,110,END=500)INPUT(N) 

110 FORMAT(5X,F12.4) 
GOTO 100 

500 CONTINUE 
N = N-1 
WRITE(6,600)N 

600 FORMATdHO,'N = ',15) 
C 
C************************************************ 
C CONVERT DATA TO FIRST DIFFERENCE 

DO 700 I = 1,N-1 
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INPUT(I) = INPUT(I+1) - INPUT(I) 
700 CONTINUE 

N = N-1 
NREAL = REAL(N) 

C 
c*****************************************#*********** 
C CALCULATE THE FIRST DIFFERENCE MEAN AND SUBTRACT IT 

SUM = 0.0 
MEANSQ = 0.0 
DO 800 I = 1,N 
SUM = INPUT(I) + SUM 
MEANSQ = INPUT(I)**2 + MEANSQ 

800 CONTINUE 
SUM = SUM/NREAL 
MEANSQ = MEANSQ/NREAL 
DO 900 1=1,N 
INPUT(I) = INPUT(I) - SUM 

900 CONTINUE 
C 
 ̂«T*  ̂  ̂̂  «T»  ̂̂  »1n  ̂ »T* ̂  ̂  ̂   ̂̂  ̂  «T»  ̂ *T» /f» »T* »T» 

C CALCULATE THE ACF 
RHOSUM = 0.0 
WRITE(6^1000) 

1000 FORMAT(IHO,'ACF') 
WRITE(6,1100) 

1100 F0RMAT(1X,28X,'-1.0',5X,'-0.8',6X,'-0.6',6X,'-0.4',6X, 
1 '-0.2',7X,'0.0',7X,'0.2',7X,'0.4',7X,'0.6',7X,'0.8', 
2 7X,'I.O'/IX,'LAG',3X,'COEFF',5X,'S',5X,'T-VAL', 
3 2X,'I',10(9('-'),'!')) 
DO 1200 TAU = 1,NACF 
SUM =0.0 
DO 1150 I = 1,N-TAU 
SUM = SUM + INPUT(I)*INPUT(I+TAU) 

1150 CONTINUE 
RHO(TAU) = SUM/(MEANSQ*(N-TAU)) 
S=SQRT((1.0+2.0*RHOSUM)/NREAL) 
T = RHO(TAU)/S 
CALL PLOT(TAU,RHO(TAU),S,T) 
RHOSUM = RHOSUM + RHO(TAU)**2 

1200 CONTINUE 
C 
C*********************************************************** 
C CALCULATE THE PACF 

S = SQRTd/NREAL) 
WRITE(6,1300) 

1300 FORMAT(IHO,'PACF') 
WRITE(6,1100) 
DO 1500 TAU = 1,NPACF 
PHINUM =0.0 
PHIDEN =0.0 
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DO 1400 J=1,TAU-1 
PHINUM = PHINUM + PHI(1,J)*RHO(TAU-J) 
PHIDEN = PHIDEN + PHI(1,J)*RH0(J) 

1400 CONTINUE 
PHI(2,TAU) = (RHO(TAU)-PHINUM)/(1.0-PHIDEN) 
PACE(TAU) = PHI(2,TAU) 
DO 1800 J = 1,TAU-1 
PHI(2,J) = PHId.J) - PHI(2,TAU)*PHI(1,TAU-J) 

1600 CONTINUE 
DO 1700 J = l.TAU 
PHI(1,J) = PHI(2,J) 

1700 CONTINUE 
T=PACF(TAU)/S 
CALL PLOT(TAU,PACE(TAU),S,T) 

1500 CONTINUE 
C 

END 
C 
C************************************** 
C PLOT SUBROUTINE 

SUBROUTINE PLOT(TAU,COEFF,S,T) 
INTEGER TAU,NSTARS,NTWOS 
REAL COEFF,S,T 
EQUIVALENCE (GRAFLN,LINE(1)) 
CHARACTER*! LINE(100) 
CHARACTER*100 GRAFLN 

C 
DO 2000 I = 1,100 
LINE(I) = ' ' 

2000 CONTINUE 
NTWOS = INT(50.0*1.96*8 +0.5) 
IF (COEFF.LT.0.0) THEN 
NSTARS = INT(50.0*COEFF - 0.5) 
DO 2100 I = 50+NSTARS,50 

LINE(I) = '*' 
2100 CONTINUE 

ELSE 
NSTARS = INT(50.0*COEFF +0.5) 
DO 2200 I=50,NSTARS+50 

LINE(I) = '*' 
2200 CONTINUE 

ENDIF 
LINE(50-NTWOS) = '<' 
LINE(50+NTWOS) = '>' 
WRITE(6,2300)TAU,COEFF,S,T,GRAFLN 

2300 FORMAT(lX,I2,3X,F6.3,2X,F6.3,2X,F6.2,2X,'!',A) 
RETURN 
END 
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Kalman Filter 

The Kalman filter program produces N-step ahead forecasts 

for a time series. The mean square error of the forecast 

errors are calculated to measure model accuracy. An 

autocorrelation function and Box-'Ljung statistic are also 

calculated on the forecast errors to determine if the errors 

are correlated. Additional information on the Kalman filter 

algorithm is presented in the Kalman Filter chapter. 

PROGRAM KALMAN 
C 

REAL X(5),XEST(5),XAHEAD(5),XPRDCT(10) 
REAL P(5.5),PEST(5,5) 
REAL H(5,5),HTRNSP(5,5),K(5) 
REAL PHI(5,5),PHIT(5,5),PHIAHD(5,5) 
REAL Q(5,5),IDENT(5,5),TEMP(5,5) 
REAL ERRVAR,AVEERR,MSE,TSTAT,CHI,STDERR,RCNT 
REAL XAXIS(0:1500),RHO(0:50),ERROR(0:1500) 
REAL Z,Y,R,YEST,SCALR 

C 
INTEGER N,PRDCTN,NACF 
INTEGER CNT,CMPCNT,RHOCNT 

C 
LOGICAL OPENPR 

C 
CHARACTER*4 OPEN 

C 
g*****************:!:********************************** 
C OPEN FILE UNITS #6 IS PRINTER & #5 IS CARD READER 
C FILE 1 = INPUT RAW DATA, #2 = OUTPUT OF X EST 
C 

OPEN(1,FILE='DOWJONES.TRNSPRTl.HOUR') 
OPEN(2,FILE='KALMAN.DATA',STATUS:'NEW) 

C 

C READ IN N,PHI,H,Q,R, AND INITIAL ESTIMATES OF XEST AND PEST 
READ(5,100)N 
WRITE(6,105)'N = ',N 

100 F0RMAT(I2) 
105 FORMAT(IHO,A,15) 

C 
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DO 110 1=1,N 
READ(5,115)(PHI(T.,J) ,J=1,N) 
WRITE(6,120){PHI(I,J),J=1,N) 
DO 110 J=1,N 
PHIT(J,I)=PHI(I,J) 

110 CONTINUE 
115 FORMAT(6F12.4) 
120 FORMAT(IHO,'PHI : M0F12.4) 

C 
READ(5,130)(H(1,I),I=1,N) 

130 FORMAT(6F8.4) 
WRITE(6,135)(H(1,I),I=1,N) 

135 FORMAT (IHO, 'H MATRIX: M0F8.4) 
DO 136 1=1,N 
HTRNSP(I,1)=H(1,I) 

136 CONTINUE 
C 

READ(5,140)R 
140 FORMAT(F8.6) 

WRITE(6,145)R 
145 FORMAT(IHO,'R = ',F8.6) 

C 
DO 150 1=1,N 
READ(5,160)(Qfl,J),J=1,N) 

WRITE(6,165)(Q(I,J),J=1,N) 
150 CONTINUE 
160 FORMAT(5F12.6) 
165 FOIÎMATdHO,'Q: ',10F12.6) 

C 
READ(5,170)(XEST(I),I=1,N) 
WRITE(6,175)(XEST(I),I=1,N) 

170 FORMAT(6F12.4) 
175 FORMAT(IHO,'XEST (TRANSPOSED) = ',6(F8.2,3X) ) 

C 
DO 180 1=1,N 
READ(5,200)(PEST(I,J),J=1,N) 
WRITE(6,205)(PEST(I,J),J=1,N) 

180 CONTINUE 
200 FORMAT(6F12.4) 
205 FORMAT(IHO,'PEST : ',6F12.4) 

C 
/*1 vl/ ^ ^ ̂ ^ ^ ̂ ^ ^ ̂  ̂  ^ ̂  ̂  ^ ̂  ̂  ^ ̂  ̂  ̂  ^ ̂  ̂  ̂  ^ ^ ̂  ̂  

C READ IN START POINT FOR COMPARISON 
READ(5,220)CMPCNT 

220 FORMAT(15) 
C 
C READ IN # OF STEPS AHEAD TO PREDICT 

READ(5,230)PRDCTN 
230 FORMAT(12) 
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WRITE(6,290) 
290 FORMAT(IH ,100(IH-)/lHO,'RESULTS') 

C 

c CREATE IDENTITY MATRIX 
DO 300 1=1,N 
DO 300 J=1,N 

IF(I.EQ.J) THEN 
IDENT(I,I)=1.0 

ELSE 
IDENT(I,J)=0.0 

ENDIF 
300 CONTINUE 

C 
C GENERATE PHI MATRIX TO PREDICT AHEAD N STEPS 

DO 310 1=1,N 
DO 310 J=1,N 
PHIAHD(I,J)=PHI(I,J) 

310 CONTINUE 
DO 320 I=1,PRDCTN-1 

CALL MATMPY(N,N,N,PHI,PHIAHD,PHIAHD) 
320 CONTINUE 

C 

C READ IN MEASUREMENTS, PERFORM FILTER OPS, AND STORE DATA * 
C************************************************************ 
c 

AVEERR =0.0 
MSE =0.0 
CNT=-1 

400 READd, 410, END=500)Z, OPEN 
410 FORMAT(5X,F12.4,2X,A4) 

C 
OPENPR = .FALSE, 
IF (OPEN.EQ.'OPEN') THEN 
OPENPR = .TRUE. 

ENDIF 
C 

C CALCULATE ERROR STATISTICS 
IF (OPENPR) GOTO 1000 
CNT=CNT+1 
IF(CNT.LT.CMPCNT) GOTO 1000 
XAXIS(CNT-CMPCNT) = REAL(CNT-CMPCNT) 
ERROR(CNT-CMPCNT) = Z-XPRDCT(l) 
AVEERR= AVEERR + ERROR(CNT-CMPCNT) 
MSE = MSE + ERROR(CNT-CMPCNT)**2 

1000 CONTINUE 
C 
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C CALCULATE THE KALMAN GAIN 
CALL MATMPY(1,N,N,H,PEST,TEMP) 
CALL MATMPY(1,N,1,TEMP,HTRNSP,K) 
SCALR=1/(K(1)+R) 
DO 440 1=1,N 
K(I)=SCALR* HTRNSP(I,1) 

440 CONTINUE 
CALL MATMPY(N,N,1,PEST,K,K) 

C 
C*************************************** 
C UPDATE THE STATE MATRIX X 

CALL MATMPY(1,N,1,H,XEST,X) 
SCALR = Z -X(l) 
DO 430 1=1,N 
X(I)= SCALR* K(I) 

430 CONTINUE 
CALL MATADD(N,1,XEST,X,X) 

C 
C****************************************** 
C UPDATE THE ERROR COVARIANCE MATRIX, P 

CALL MATMPY(N,1,N,K,H,P) 
DO 470 1=1,N 

DO 470 J=1,N 
P(I,J)= -1.0*P(I,J) 

470 CONTINUE 
CALL MATADD(N,N,IDENT,P,P) 
CALL MATMPY(N,N,N,P,PEST,P) 

C 
CALL MATMPY(1,N,1,H,X,Y) 

C WRITE(2,420)CNT,Z,Y,XEST(1) 
C 420 FORMAT(I5,F12.4,F12.4,F12.4) 

-If ^ ̂ ̂ ̂ ̂ ^ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^ 

C PROJECT AHEAD XEST AND PEST FOR NEXT STEP 
CALL MATMPY(N,N,N,PHI,P,PEST) 
CALL MATMPY(N,N,N,PEST,PHIT,PEST) 
CALL MATADD(N,N,PEST,Q,PEST) 
CALL MATMPY(N,N,1,PHI,X,XEST) 

C 
C***************************************** 
C FORECAST X MATRIX AHEAD N STEPS 

CALL MATMPY(N,N,1,PHIAHD,X,XAHEAD) 
DO 2000 I=1,PRDCTN-1 
XPRDCT(I)=XPRDCT(I+1) 

2000 CONTINUE 
XPRDCT(PRDCTN)=XAHEAD(1) 

C 
C *********************************************** 
C RETURN TO BEGINNING OF CYCLE 

GOTO 400 
500 CLOSE(l) 
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CL0SE(2) 
C 

RHOCNT = CNT-CMPCNT 
RCNT = REAL(RHOCNT) 
AVEERR = AVEERR/(RH0CNT+1) 
MSE = MSE / RCNT 
ERRVAR = MSE - (AVEERR)**2 
STDERR = SORT(ERRVAR) 
TSTAT = AVEERR /(STDERR/SQRT(RCNT)) 

C 

C PRINT FINAL KALMAN GAIN, STATE ESTIMATE, 
C & ERROR COVARIANCE MATRIX 

WRITE(6,600)(K(I),I=1,N) 
600 FORMAT(IHO,'KALMAN GAIN VECTOR (TRANSPOSED) IS:', 

1 10F8.4) 
WRITE(6,650)(XEST(I),I=1,N) 

650 FORMATdHO,'THE EST. STATE VECTOR (TRANSPOSED) IS: 
$ 8(F10.3,3X)) 
WRITE(6,700)'THE FINAL EST. ERROR COVARIANCE MATRIX 

1 IS: ' 
700 FORMAT(IHO,A) 

DO 800 1=1,N 
WRITE(6,900)(PEST(I,J),J=1,N) 

800 CONTINUE 
900 FORMAT(lH0,10F12.4) 

c 
WRITE(6,1050)PRDCTN 

1050 FORMAT(IHl,'ERROR STATISTICS ARE FOR ',15, 
$ '-STEP AHEAD PREDICTION') 
WRITE(6,1070)RHOCNT,AVEERR,TSTAT,MSE,ERRVAR 

1070 FORMAT(IHO,'RESIDUAL STATISTICS: ','# =',I5,3X, 
1 'MEAN = ',F8.4,3X,'T-STATISTIC = ',F6.2,3X, 
2 'MSE = ',F8.4,3X,'VARIANCE = ',F8.4) 

^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^ ̂ «v ̂  «v ^  ^  ^  ^  ^  ^  ^ ^  ^  ^  ^  ^  ^  ^  ̂  ^  ^  ^  ̂  ^  ^  ^  ^ ^  ^  ^  ^  ^  ^  ^  ̂  ^  ^  ^  ^  ^  
C CALCULATE RESIDUAL ACF 
C 

RHO(O) = 0.0 
SUM = 0.0 
NACF = 20 
WRITE(6,6000) 

6000 FORMATdHO,'AUTOCORRELATION PLOT ') 
WRITE(6,6010) 

6010 FORMAT(1HO,28X,'-1.0',5X,'-0.8',6X,'-0.6',6X,'-0.4',6X, 
1 '-0.2',7X,'0.0',7X,'0.2',7X,'0.4',7X,'0.6',7X, 
2 '0.8',7X,'I.O'/IX,'LAG',3X,'COEFF',5X,'S',5X, 
3 'T-VAL',2X, ' Î M0(9('-'),'Î ' )) 
DO 4000 1=1,NACF 
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RHO(I)=0.0 
DO 4100 J=0,RHOCNT-I 
RHO(I)= RHO(I) + ERROR(J)*ERROR(I+J) 

4100 CONTINUE 
RHO(I) = RHO(I)/(RHOCNT*MSE) 
SUM = SUM + RH0(I-1)**2 
S = SQRT((1.0 + 2.0*SUM)/RCNT) 
T = RHO(I)/S 
CALL PLOT(I,RHO(I),S,T) 

4000 CONTINUE 
C 

C CALCULATE CHI-SQUARE DISTRIBUTION FOR RESIDUALS 
C 

CHISQR =0.0 
DO 5000 I=1,NACF 

CHISQR = CHISQR + ((RHO(I)**2)/(RH0CNT+l-I)) 
5000 CONTINUE 

CHISQR = CHISQR*(RH0CNT+l)*(RH0CNT+2+l) 
WRITE(6,1100)CHISQR 

1100 FORMAT(IHO,'BOX-LJUNG STATISTIC FOR THE RESIDUAL ACF= 
1 F12.4,3X,'WITH 16 DEGREES OF FREEDOM. 95% C.I.=26.3 
WRITE(6,1150) 

^ ̂  ̂  ̂  ^ ^ ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂ ^ ̂  

C PLOT RESIDUALS 
CALL GRAPH(RHOCNT+1,XAXIS,ERROR,3,7,12.0,9.0,0.0,0.0, 
$ 0.0,0.0,'INDEX;','ERROR;','RESIDUALS;',';') 

C 
END 

C 
^ ̂ ̂  ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂  ̂  ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ 

C SUBROUTINES 
C MATRIX ADD SUBROUTINE 

SUBROUTINE MATADD(I,J,A,B,C) 
REAL A(5,5),B(5,5),C(5,5) 
DO 2100 L=1,I 

DO 2100 M=1,J 
C(L,M)=A(L,M)+B(L,M) 

2100 CONTINUE 
RETURN 
END 

C 
C**************************************** 
C MATRIX MULTIPLY ROUTINE 

SUBROUTINE MATMPY(I,J,L,A,B,C) 
INTEGER I,J,L,M,0,U 
REAL A(5,5),B(5,5),C(5,5),TMP(5,5) 
REAL SUM 
DO 2200 M=1,I 
DO 2200 0=1,L 
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SUM=0.0 
DO 2210 U=1,J 
SUM=SDM + A(M,U)*B(U,0) 

2210 CONTINUE 
TMP(M,0)=SUM 

2200 CONTINUE 
DO 2220 M=1,I 
DO 2220 0=1,L 
C(M,0)=TMP(M,0) 

2220 CONTINUE 
RETURN 
END 

C 
C***************************************** 

SUBROUTINE PLOT(TAU,COEFF,S,T) 
C 

CHARACTER*1 LINE(100) 
CHARACTER*100 GRAFLN 
INTEGER TAU,NSTARS,NTWOS 
REAL COEFF,S,T 
DATA LINE/100*' '/ 
EQUIVALENCE (GRAFLN,LINE(1)) 

C 
DO 50 1=1,100 
LINE(I) = ' ' 

50 CONTINUE 
NTWOS = INT(50.0*1.96*3 +0.5) 
IF (COEFF.LT.0.0) THEN 

NSTARS = INT(50.0*COEFF - 0.5) 
DO 100 I=50+NSTARS,50 
LINE(I) = '*' 

100 CONTINUE 
ELSE 

NSTARS = INT(50.0*COEFF +0.5) 
DO 200 I=50,50+NSTARS 

LINE(I) = '*' 
200 CONTINUE 

ENDIF 
LINE(50-NTWOS) = '<' 
LINE(50+NTWOS) = '>' 
WRITE(6,300)TAU,COEFF,S,T,GRAFLN 

300 FORMAT(lX,I2,3X,F6.3,2X,F6.3,2X,F6.2,2X,'1',A) 
RETURN 
END 
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Adaptive Kalman Filter 

The adaptive Kalman filter program produces forecasts of 

the process realization. The forecast errors are used to 

modify the model parameters such that the model more closely 

resembles the process. The mean square error of the forecast 

errors is used to as a performance index for model 

comparison. An autocorrelation function and Box-Ljung 

statistic are calculated to test for correlation in the 

forecast errors. 

PROGRAM AKF 
C 

REAL X(5),XEST(5),P(5,5),PEST(5,5),A(5),Z0LD(5) 
REAL H(5,5),HTRNSP(5),K(5),C(5),Q(5,5) 
REAL TEMP2(5,5),TEMP(5,5),TMPVCT(5) 
REAL BETA,ZBAR,SCALR2 
REAL ERRVAR,AVEERR,MSE,TSTAT,CHI,STDERR,RCNT 
REAL XAXIS(0:1000),RHO{0:25),ERROR(0:1000) 
REAL Z,Y,R,YEST,SCALR 

C 
INTEGER N,PRDCTN,NACF 
INTEGER CNT,CMPCNT,RHOCNT,RUNCNT 

C 
LOGICAL OPENPR 

C 
CHARACTER*4 OPEN 

 ̂̂  ̂  ̂  ̂  ̂  ̂   ̂̂  ̂  ̂  ̂  ̂  ̂   ̂̂  ̂  ̂  ̂  ̂   ̂̂  ̂  ̂   ̂̂   ̂̂  ̂  ̂   ̂̂   ̂tif  ̂ /n  ̂ »T» 'T» «T» «T* «T» 'T* ̂  't* «T» 'T* »T* «T» 

C OPEN FILE UNITS #6 IS PRINTER & #5 IS CARD READER 
C FILE 1 = INPUT RAW DATA, #2 = OUTPUT OF X EST 
C 

OPEN(1,FILE='DOWJONES.TRNSPRTl.HOUR') 
OPEN(2,FILE='KALMAN.DATA',STATUS='NEW') 

C 
C****************************************************** 
C READ IN PARAMETERS 

READ(5,100)N 
WRITE(6,110)'N = ',N 

100 FORMAT(12) 
110 FORMAT(IHO,A,12) 

C 
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READ(5,200)ZBAR 
200 FORMAT(F8.3) 

C 
WRITE(6,205)ZBAR 

205 FORMAT(IHO,'PREVIOUS Z VALUES ARE INITIALIZED TO: 
1 F8.3) 

C 
DO 210 1=1,5 
ZOLD(I) = ZBAR 
A(I) = 0.0 

210 CONTINUE 
C 

260 F0RMAT(5(F8.4,4X)) 
C 

READ(5,300)R 
300 FORMAT(F8.4) 

WRITE(6,310)R 
310 FORMAT(IHO,'R = ',F8.4) 

C 
DO 426 J=1,N 
READ(5,427)(Q(J,I),I=1,N) 
WRITE(6,425)(Q(J,I),I=1,N) 

426 CONTINUE 
427 FORMAT(5F12.7) 
425 FORMAT(IHO,'Q = ',5(F12.7)) 

C 
READ(5,350)(C(I),I=1,N) 
WRITE(6,400)(C(I),I=1,N) 

350 FORMAT(5F12.7) 
400 FORMAT(IHO,'C (TRANSPOSED) = ',5F12.7) 

C 
READ(5,410)BETA 
WRITE(6,415)BETA 

410 FORMAT(F12.6) 
415 FORMAT(IHO,'BETA = ',F8.6) 

C 
READ(5,260)(XEST(I),I=1,N) 
WRITE(6,460)(XEST(I),I=1,N) 

460 FORMATdHO,'XEST (TRANSPOSED) = ' , 5(F8 . 3, 3X) ) 
C 

DO 500 1=1,N 
. READ(5,260)(PEST(I,J),J=1,N) 

WRITE(6,520)(PEST(I,J),J=1,N) 
500 CONTINUE 
520 FORMATdHO,'PEST : ' , 5(F8. 4, 3X) ) 

C 

C READ IN START POINT FOR COMPARISON 
READ(5,550)CMPCNT 

550 FORMAT(15) 
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C READ IN # OF STEPS AHEAD TO PREDICT 
READ(5,100)PRDCTN 

C 
WRITE(6,750) 

750 FORMAT(IH ,80(lH-)/lHO,'RESULTS') 
C 

C CALCULATE THE H MATRIX 
HTRNSP(l) = ZOLD(l) 
HTRNSP(2) =1.0 
H(l,l) = HTRNSP(l) 
H(l,2) = HTRNSP(2) 
CALL VCTMPY(N,HTRNSP,XEST,XFORE) 

C 

C READ IN MEASUREMENTS, PERFORM FILTER OPS, AND STORE DATA * 

C 
AVEERR = 0.0 
MSE =0.0 
CNT=-1 

1000 READd, 1100,END=1900)Z,OPEN 
1100 FORMAT(5X,F12.4,2X,A4) 
C 

CNT = CNT+1 
OPENPR = .FALSE. 
IF (OPEN.EQ.'OPEN') THEN 
OPENPR = .TRUE. 

ENDIF 
C 

C CALCULATE THE KALMAN GAIN 
CALL MATMPY(N,N,1,PEST,HTRNSP,TMPVCT) 
CALL VCTMPY(N,HTRNSP,TMPVCT,SCALR2) 
CALL VCTMPY(N,HTRNSP,C,SCALR) 
SCALR = 2.0*SCALR + SCALR2 + R 
CALL MATADD(N,1,C,TMPVCT,TEMP2) 
DO 1150 1=1,N 

K(I)= TEMP2(I,1)/SCALR 
1150 CONTINUE 

C 
C**************************************** 
C DETERMINE FORECAST FOR THIS PERIOD AND ADJUST A AND ZOLD 

SCALR = Z -XFORE 
DO 1200 1=1,4 
A(6-I) = A(5-I) 
Z0LD(6-I) = Z0LD(5-I) 

1200 CONTINUE 
A(l) = SCALR 
ZOLD(l) = Z 
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c**************************************************** 
C ACCUMULATE ERROR STATISTICS 

IF (CNT.GE.CMPCNT) THEN 
IF (OPENPR) THEN 
CNT = CNT -• 1 

ELSE 
XAXIS(CNT-CMPCNT) = REAL(CNT-CMPCNT) 
ERROR(CNT-CMPCNT) = Z-XFORE 
AVEERR= AVEERR + ERROR(CNT-CMPCNT) 
USE = MSE + ERROR(CNT-CMPCNT)** 2 

ENDIF 
ENDIF 

C 
^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

C UPDATE THE STATE MATRIX X 
DO 1300 1=1,H 
temp(i,1)= scalr* k(i) 

1300 CONTINUE 
CALL MATADD(N,1,XEST,TEMP,X) 

C 

C UPDATE THE ERROR COVARIANCE MATRIX, F 
CALL MATMPY(1,N,N,H,PEST,TEMP) 
DO 1350 1=1,N 
TEMP2(1,I) = C(I) 

1350 CONTINUE 
CALL MATADD(1,N,TEMP2,TEMP,P) 
CALL MATMPY(N,1,N,K,P,TEMP) 
DO 1360 1=1,N 
DO 1360 J=1,N 
TEMP(I,J) = -1.0*TEMP(I,J) 

1360 CONTINUE 
CALL MATADD(N,N,PEST,TEMP,P) 
CALL SYMTRC(N,P) 

C 
WRITE(2,1400)CNT,Z,XFORE 

1400 FORMAT(I4,2X,F6.2,2X,F7.3) 
C 

C PROJECT AHEAD XEST AND PEST FOR NEXT STEP 
CALL MATADD(N,N,P,Q,TEMP) 
DO 1460 1=1,N 
DO 1460 J=1,N 
PEST(I,J) = BETA*TEMP(I,J) 

1460 CONTINUE 
CALL SYMTRC(N,PEST) 

C 
DO 1500 1=1,N 
XEST(I) = X(I) 

1500 CONTINUE 
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f̂ 

C CALCULATE THE H MATRIX 
HTRNSP(l) = ZOLD(l) 
HTRNSP(2) = 1.0 
H(l,l) = HTRNSP(l) 
H(l,2) = HTRNSP(2) 
CALL VCTNPY(N,HTRNSP,XEST,XFORE) 

C 
C ****************************************** 
C RETURN TO BEGINNING OF CYCLE 

GOTO 1000 
1900 CLOSE(l) 

CL0SE(2) 
C 

RHOCNT = CNT-CMPCNT 
RCNT = REAL(RHOCNT) 
AVEERR = AVEERR/(RH0CNT+1) 
MSE = MSE / RCNT 
ERRVAR = MSE - (AVEERR)**2 
STDERR = SORT(ERRVAR) 
TSTAT = AVEERR /(STDERR/SQRT(RCNT)) 

C 
 ̂\U  ̂  ̂

^ ^ ̂ ^ ̂ ^ ̂ ^ ^ ^ ̂ ̂  ^ 

C PRINT KALMAN GAIN, STATE ESTIMATE AND 
C ERROR COVARIANCE MATRIX 

WRITE(6,2000)(K(I),1=1,N) 
2000 FORMAT(IHO,'KALMAN GAIN VECTOR (TRANSPOSED) IS: 

1 10F8.4) 
WRITE(6,2100)(XEST(I),I=1,N) 

2100 FORMAT(IHO,'THE EST. STATE VECTOR (TRANSPOSED) IS: 
$ 8(F10.3,3X)) 
WRITE(6,2200)'THE FINAL EST. ERROR COVARIANCE MATRIX:' 

2200 FORMAT(IHO,A) 
DO 2300 1=1,N 
miTE(6,2400)(PEST(I,J) ,J=1,N) 

2300 CONTINUE 
2400 FORMAT(lH0,10F12.4) 

C 
C****************************************** 
C WRITE RESIDUAL STATISTICS 

WRITE(6,2500)PRDCTN 
2500 FORMAT(IHl,'ERROR STATISTICS ARE FOR ',12, 

$ '-STEP AHEAD PREDICTION') 
WRITE(6,2600)RHOCNT,AVEERR,TSTAT,MSE,ERRVAR 

2600 FORMAT(IHO,'RESIDUAL STATISTICS: ','# =',I5,3X, 
1 'MEAN = ',F8.4,3X,'T-STATISTIC = 
2 F6.2,3X,'MSE = ',F8.4,3X,'VARIANCE = ',F8.4) 

C***************************************** 
C CALCULATE RESIDUAL ACF 
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RHO(O) = 0.0 
SDM =0.0 
NACF = 20 
WRITE(6,3000) 

3000 FORMAT(IHO,'AUTOCORRELATION PLOT ') 
WRITE(6,3100) 

3100 FORMAT(1HO,28X,'-1.0',5X,'-0.8',6X,'-0.6',6X,'-0.4',6X, 
1 '-0.2' ,7X, '0.0' ,7X, '0.2' ,7X, '0.4' ,7X, '0.6' ,7X/0.8' , 
2 7X, 'I.O'/IX,'LAG',3X,'COEFF',5X,'S',5X,'T-VAL', 
3 2X,'|',10(9('-'),'!')) 
DO 3300 1=1,NACF 
RHO(I)=0.0 
DO 3200 J=0,RHOCNT-I 
RHO(I)= RHO(I) + ERROR(J)*ERROR(I+J) 

3200 CONTINUE 
RHO(I) = RHO(I)/(RHOCNT*MSE) 
SUM = SUM + RH0(I-1)**2 
S = SQRT((1.0 + 2.0*SUM)/RCNT) 
T = RHO(I)/S 
CALL FLOT(I,RHO(I),S,T) 

3300 CONTINUE 
C 

C CALCULATE CHI-SQUARE DISTRIBUTION FOR RESIDUALS 
C 

CHISQR =0.0 
DO 3400 1=1,NACF 

CHISQR = CHISQR + ((RH0(I)**2)/(RH0CNT+1-I)) 
3400 CONTINUE 

CHISQR = CHISQR*(RHOCNT+1)*(RHOCNT+2+1) 
C 

WRITE(6,3500)CHISQR 
3500 FORMAT(IHO,'BOX-LJUNG STATISTIC FOR THE RESIDUAL ACF=', 

1 F10.1,3X,'WITH 18 DEGREES OF FREEDOM. 95% C.I.=26.3') 

C PLOT RESIDUALS 
CALL GRAPH(110,XAXIS,ERROR,3,7,12.0,9.0,0.0,0.0, 
$ 0.0,0.0,'INDEX;','ERROR;','RESIDUALS;',';') 

C 
END 

C 

C SUBROUTINES 
C MATRIX ADD SUBROUTINE 

SUBROUTINE MATADD(I,J,A,B,C) 
REAL A(5,5),B(5,5),C(5,5) 
DO 2100 L=1,I 

DO 2100 M=1,J 
C(L,M)=A(L,M)+B(L,M) 

2100 CONTINUE 
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RETURN 
END 

C 
 ̂̂   ̂̂  ̂  «if ̂   ̂̂   ̂̂  ̂  ̂  ̂  ̂   ̂  ̂̂  ̂  ̂  ̂  ̂  ̂   ̂̂  ̂  ̂  ̂   ̂̂   ̂̂  
^ ̂ ̂ ̂ ̂  ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂  ̂ ̂ ̂ ̂  ̂ ̂ ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ̂ 

C MATRIX MULTIPLY ROUTINE 
SUBROUTINE MATMPY(I,J,L,A,B,C) 
INTEGER I,J,L,M,0,U 
REAL A(5,5),B(5,5),C(5,5),TMP(5,5) 
REAL SUM 
DO 2200 M=1,I 
DO 2200 0=1,L 
SUM=0.0 
DO 2210 U=1,J 
SUM=SUM + A(M,U)*B(U,0) 

2210 CONTINUE 
TMP(M,0)=SUM 

2200 CONTINUE 
DO 2220 M=1,I 
DO 2220 0=1,L 

C(M,0)=TMP(M,0) 
2220 CONTINUE 

RETURN 
END 

C 
c***************************)»:************ 
C SUBROUTINES 
C VECTOR MULTIPLY ROUTINE 

SUBROUTINE VCTMPY(I,A,B,SUM) 
INTEGER I 
REAL A(5),B(5) 
REAL SUM 
SUM=0.0 
DO 2200 M=1,I 

SUM=SUM + A(M)*B(M) 
2200 CONTINUE 

RETURN 
END 

C 

C MAKE MATRIX SYMMETRIC 
SUBROUTINE SYMTRC(N,ARRAY) 
REAL ARRAY(5,5) 
DO 1000 1=1,N-1 
DO 1000 J=I+1,N 

ARRAY(I,J) = (ARRAY(I,J) + ARRAY(J,I))/2.0 
ARRAY(J,I) = ARRAYd.J) 

1000 CONTINUE 
DO 2000 1=1,N 
IF (ARRAY(I,I).LT.O.O) THEN 
ARRAY(I,I) = 0.0 
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ENDIF 
2000 CONTINUE 

RETURN 
END 

C 

SUBROUTINE PLOT(TAU,COEFF,S,T) 
C 

character*! line(100) 
CHARACTER*100 6RAFLN 
INTEGER TAU,NSTARS,NTWOS 
REAL COEFF,S,T 
DATA LINE/100*' '/ 
EQUIVALENCE (6RAFLN,LINE(1)) 

C 
DO 50 1=1,100 
LINE(I) = ' ' 

50 CONTINUE 
NTWOS = INT(50.0*1.96*5 +0.5) 
IF (COEFF.LT.0.0) THEN 

NSTARS = INT(50.0*COEFF - 0.5) 
DO 100 I=50+NSTARS,50 
LINE(I) = '*' 

100 CONTINUE 
ELSE 

NSTARS = INT(50.0*COEFF +0.5) 
DO 200 I=50,50+NSTARS 
LINE(I) = '*' 

200 CONTINUE 
ENDIF 
LINE(50-NTWOS) = '<' 
LINE(50+NTWOS) = '>' 
WRITE(6,300)TAU,COEFF,S,T,GRAFLN 

300 FORMAT(lX,I2,3X,F6.3,2X,F6.3,2X,F6.2,2X,'|',A) 
RETURN 
END 

Speculator Buy/Sell Strategy 

The speculator buy and sell program uses the Kalman 

filter forecasts to guide market transactions. The actual 

and forecast prices are stored in an external file created by 

the Kalman or adaptive Kalman filter prograuns. The user 

selects which buy and sell strategy to try. The available 
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strategies are step, hysteresis, linear and quadratic. The 

program starts with $10,000 in assets and tries to increase 

the assets by using the selected strategy. A broker 

commission, or load factor, can be charged on each 

transaction. 

PROGRAM SPECULATOR 
C 

REAL Z(1050),XFORE(1050),DELTAX,ABSDIF 
REAL BFACTR,SFACTR, DLTSHR,CASH,SHARES,ASSETS,BIAS, 
REAL LOAD,OLDSHR,OLDCSH,BROKER,CLIP,PERCNT 

C 
INTEGER CNT.CMPCNT,COUNT 

C 
LOGICAL OPENPR(1050) 
CHARACTER*4 OPEN 
CHARACTER*! OPTION 

C 

C PRINT TITLE 
WRITE(6,10) 

10 FORK/IT (IHl) 
WRITE(6,20) 

20 FORMAT(IX,'BUY / SELL STRATEGY:'/IHO, 
1 'S - STEP FUNCTIONVIX,'L - LINEAR'/IX, 
2 'Q - QUADRATIC'/IHO,'ENTER OPTION:') 
KEAD(5,25)OPTION 

25 FORMAT(Al) 
IF (OPTION.EQ.'S') THEN 

WRITE(6,26)'STEP FUNCTION' 
ELSEIF (OPTION.EQ.'L') THEN 

WRITE(6,26)'LINEAR FUNCTION' 
ELSEIF (OPTION.EQ.'Q') THEN 

WRITE(6,26)'QUADRATIC FUNCTION' 
ENDIF 

26 F0RMAT(1X,A) 
WRITE(6,30) 

30 FORMAT(IHO) 

C OPEN FILE UNITS: FILE 1 = INPUT RAW DATA, #3 = BATCH 
C DATA FILE 

OPEN(1,FILE='KALMAN.DATA') 
OPEN(3,FILE='SPECULAT.DATA') 
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COUNT = 1 
1050 READ(1,1100,END=120 0)Z(COUNT),XFORE(COUNT),OPEN 

OPENER(COUNT) = .FALSE. 
IF (OPEN.EQ.'OPEN') THEN 
OPENPR(COUNT)=.TRUE. 

ENDIF 
COUNT = COUNT + 1 
GOTO 1050 

1100 FORMAT(F6.2,2X,F8.4,2X,A4) 
WRITE(6,40) 

40 FORMAT(IX) 
1200 COUNT = COUNT - 1 

XFORE(COUNT + 1) = Z(COUNT) 
WRITE(6,1225)COUNT 

1225 F0RMAT(1X,I5,' DATA POINTS') 
^ 'T* *  ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^  ̂ ^ ^ ^ ^ ^ ^ ^  ̂ ^  

C READ IN PARAMETERS 
READ(3,550)CMPCNT 

550 FORMAT(15) 
C 

READ(3,675)LOAD 
675 FORMAT(F6.2) 

WRITE(6,680)LOAD 
680 FORMAT(IHO,'LOAD FACTOR = ',F6.2,' %') 

LOAD = LOAD/100.0 
C 

WRITE(6,700) 
700 FORMAT(IHO,' BIAS',3X,' BUY',3X,'SELL',3X,' CLIP',3X, 

$ 'ASSETS($)',3X,'SHARES($)',3X,' BROKER') 
C 
600 READ(3,625,END=6000)BIAS,BFACTR,SFACTR,CLIP 
625 FORMAT(4(F8.4,4X)) 

C 

C INITIALIZATION 
CASH = 5000.00 
OLDCSH = 5000.00 
OLDSHR = 0.0 
PERCNT =0.50 
BROKER =0.0 
SHARES = CASH/Z(CMPCNT) 
OLDSHR = SHARES 

C READ IN MEASUREMENTS, PERFORM FILTER OPS, AND STORE DATA 
DO 1900 CNT = 1,COUNT 
IF (OPENPR(CNT)) THEN 
CASH = OLDCSH 
SHARES = OLDSHR 

ENDIF 
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C BUY/SELL STRATEGY 
IF (CNT.LT.CMPCNT) GOTO 1550 

ASSETS = CASH + SHARES*Z(CNT) 
OLDCSH = CASH 
OLDSHR = SHARES 
DELTAX = XF0RE(CNT+1) - Z(CNT) 
ABSDIF = ABS(DELTAX) 

C 
IF (ABSDIF.LE.BIAS) THEN 
FERONT =0.50 

ELSE 
IF (DELTAX.GE.CLIP) THEN 
PERCNT = BFACTR 

ELSEIF (DELTAX.LE.-1.0*CLIP) THEN 
PERCNT = SFACTR 

ELSEIF (DELTAX.GT.BIAS) THEN 
IF (OPTION.EQ.'S') THEN 
PERCNT = BFACTR 

ELSEIF (OPTION.EQ.'L') THEN 
PERCNT=(BFACTR-0.5)*((DELTAX-BIAS)/(CLIP-BIAS)) 

1 + 0.5 
ELSEIF (OPTION.EQ.'Q') THEN 
PERCNT = (BFACTR-0.5)*(((DELTAX-BIAS)/ 

1 (CLIP-BIAS))**2)+0.5 
ENDIF 

ELSEIF (DELTAX.LT.-1.0*BIAS) THEN 
IF(OPTION.EQ.'S') THEN 
PERCNT = SFACTR 

ELSEIF(OPTION.EQ.'L') THEN 
PERCNT = (SFACTR-0.5)*((-BIAS-DELTAX)/ 

1 (CLIP-BIAS)) +0.5 
ELSEIF (OPTION.EQ.'Q') THEN 
PERCNT=(SFACTR-0.5)*(((-BIAS-DELTAX)/ 

1 (CLIP-BIAS))**2)+0.5 
ENDIF 

ENDIF 
ENDIF 

C 
DLTSHR = PERCNT*ASSETS/Z(CNT) - SHARES 
FEE = ABS(LOAD*DLTSHR*Z(CNT)) 
DLTSHR = DLTSHR * (1.0-LOAD) 
CASH = CASH - FEE - DLTSHR * Z(CNT) 
SHARES = SHARES +DLTSHR 
BROKER = BROKER + FEE 

C 
1550 CONTINUE 
1900 ASSETS = SHARES*Z(CNT) + CASH 

C 
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WRITE(6,5000)BIAS,BFACTR,SFACTR,CLIP,ASSETS, 
1 SHARES*Z(CNT),BROKER 

5000 FORMAT(IHO,F5.3,3X,F4.2,3X,F4.2,3X,F5.3,3X,F9.2,3X, 
1 F9.2,3X,F7.2) 
GOTO 600 

C 
C************************ 
6000 CONTINUE 

END 
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